Вписаният триъгълник с височини (Circum-Orthic Triangle) има за върхове проекциите на петите на височините от референтния триъгълник върху неговата описана окръжност.
Алгоритъм на построителната задача вписан триъгълник с височини съдържа следните стъпки:
посочват се три не колинеарни точки A, B, C и се построява референтния триъгълник;
в цикъл се изчислява пета на поредната височина върху страна на триъгълника - алгоритъм представен в намиране елементи на триъгълник;
построява се тяхната пресечна точка - ортоцентър на триъгълника;
изчисляват се дължина на радиус и координати за център на описана окръжност;
в цикъл се изчислява проекцията на петите на височините върху описаната окръжност - по алгоритъм представен в секуща;
в цикъл последователно всяка пресечна точка се свързва с отсечка - страна на търсения вписан триъгълник с височини.
Страната на референтния триъгълник разполовява отсечката от височината, заключена между ортоцентъра и проекцията й върху описаната окръжност - петата на височината е среда на отсечката.
Вписаният триъгълник с височини и референтният триъгълник имат общ ортоцентър.
Разгледайте други основни типове примерни проекти, за чиято реализация се използва изчислителна геометрия. Потърсете допълнителен материал за: триъгълник със среда на дъга, вписан триъгълник с медиани, вписан триъгълник с чевиани, вписан триъгълник със симетрали, вписан триъгълник със симедиани.