Триъгълникът на Lazy Caterer e от областта на занимателната математика. Това е числов триъгълник, който съдържа само цели числа. Крайните десни елементи от всеки ред са равни на последователните елементи от числовата редица са Lazy Caterer.
Вариант I на триъгълника има 1 за начало на всеки ред, междинните елементи се изчисляват по формулата: T(n,k)=T(n-1,k-1)+T(n-1,k) - формула като триъгълник на Паскал. Всички десни елементи (след 3-тия елемент) образуват симетрична редица.
Вариант II за триъгълник на Lazy Caterer има 1 за начало на всеки ред, междинните елементи се изчисляват по формулата: T(n,k)=T(n,k-1)+T(n-1,k) - формула като триъгълник на Каталан.
Вариант III на триъгълника Lazy Caterer има за първи и последен елемент от всеки ред последователните числа от редицата Lazy Catere, междинните елементи се изчисляват по формулата: T(n,k)=T(n,k-1)+T(n-1,k) - формула като триъгълник на Паскал, Интересен факт е, че вторите елементи от всеки ред са последователните числа на тортата.
Съставете програма, чрез която се въвежда естествено число N от интервала [1..31] и се извеждат последователните редове с числа от триъгълник на Lazy Caterer. Програмата да използва две аналогични функции - рекурсия и итерация.
Подробно описание за числовата редица на Lazy Caterer може да намерите на следните адреси: https://en.wikipedia.org/wiki/Lazy_caterer%27s_sequence; http://planetmath.org/lazycatererssequence.
Разгледайте други основни типове примерни задачи, за чието решение се използват фигури с числа и фигурни числа. Потърсете допълнителен материал за: редица на Lazy Caterer, суми на Lazy Caterer, числа на тортата, триъгълник с числа на тороида, числа на Каталан, триъгълник на Паскал.