Een ordinair onkruid maar met naam en faam. Zo maar op de weg groeiend en met de voeten getreden, toch laat de Weegbree zich niet klein krijgen. Of zou hij juist leven omdat wij hem vertrappelen? Ich armes kraut am weg, ich steh hier ungebeten, muss auf mich lassen treten.
Farmacologische werking, dus wat doet dat plantje op en in ons lijf.
Ontstekingswerend
Niettegenstaande de bekende ontstekingswerende werking van Smalle weegbree, zijn hierover weinig farmacologische studies voorhanden. Wel zijn testen uitgevoerd met extracten van Smalle weegbree in vivo en met positieve resultaten. Het toepassen van verse weegbree bladeren tegen de door insectenbeten veroorzaakte jeuk en roodverkleuring is bekend en ook deze werking is waarschijnlijk terug te voeren op de ontstekingsremmende en mogelijk ook anti-allergische eigenschappen.
Hoestwerend
Een studie bevestigt de hoestwerende werking van Smalle weegbree extract en is waarschijnlijk toe te schrijven aan zowel de ontstekingswerende, broncho-spasmolytische en de expectorerende werking.
Les feuilles de Plantain lancéolé contiennent entre autres de la noscapine. Cet alcaloïde (soluble dans l’alcool) exerce un effet antitussif. De ce fait, le plantain peut être utilisé dans le traitement des toux sèches.
Verder werden nog de volgende activiteiten vastgesteld:
Immuumstimulerend: een uit smalle weegbree gewonnen polysaccharide fractie verhoogt in vitro de productie van granulocyten (vreetcellen).
Slijmvlies genezend: waterig extract vermindert de bloedtoevoer en bevordert de wondheling.
Antitoxisch: Weegbreesap vermindert de giftige effecten op het dunne darmslijmvlies van tumoren bij proefmuizen.
Bloedstollingsbevorderend: Waterige extracten verhogen het stollingsvermogen in vitro en in vivo.
Lees verder
monografie van de Herboristen Opleiding 'Dodonaeus' samengesteld door Maurice Godefridi
Algemene en Botanische Informatie
Familie: Plantaginaceae.
Naam: Spitzwegerich (D.), Plantain (E.), Plantain (Fr.).
Volksnamen: Konijneblad, Varkensoor, 'Voetstap van de blanke man' (Indianen).
Soorten:
Plantago lanceolata L. - Smalle weegbree,
Plantago major L. - Breedbladige weegbree,
Plantago media L. - Ruige weegbree,
Plantago psyllium - Vlozaad,
Plantago ispaghulla ovata - Ispaghule (India),
Plantago coronopus - Hertshoornweegbree.
Ecologie, teelt: Veel voorkomende tredplant, gemakkelijk te vermeerderen door zaad.
Materia Medica, gebruikte delen van de plant
Plantaginis folium of herba, Het blad of kruid van Plantago lanceolata L. en van Plantago major L.
Oogst: Het blad voor de bloeitijd; dit kan tussen mei en september
Drogen: In de schaduw op gaas ± 1 week, oppassen voor bruinverkleuring
Bewaren: Buiten invloed van licht en lucht in goed gesloten verpakking.
Samenstelling, inhoudstoffen
** Slijmstoffen 6,5 %:- D-galakturonzuur,- xylose,- galactose,- pectine (2)
** Iridoïdglucoside, vooral aucubine ± 2 % dat onder invloed van ß-glucosidase omgezet wordt in aucubigenine (= antibacterieel)
* Vitamine C.
* Mineralen: kiezelzuur (1,35 %), hoog gehalte aan K en Zn.
* Nicotinezuur, ursolzuur, adenine = vit. B4 in zaad (Dharma)
* Saponinen (hemolytisch, anti-microbieel - 3)
Farmacologie, algemene werking
** Adstringentium ?
** Mucilaginosum (slijmstoffen)
** Anti-bacterieel (aucubigenine - 4, 5)
* Ophtalmicum
* Anti-histaminicum (?).
* Laxerend (zaad, vooral Plantago afra)
* Diuretisch (zaad in Chinese kruidengeneeskunde)
Nota's:
Homeopathische verdunde tinctuur zou andere werking hebben. (?)
Bij hoest is Pl. lanceolata mogelijk doeltreffender dan Pl. major.
Relatie met luchtwegen en huid.
Relatie met Tussilago farfara (slijmstoffen)
Indicatie, medisch gebruik
Luchtwegen
** Hoest, heesheid (zangers en sprekers), Ook volksmiddel: Raket (Sisymbrium)
** Astma, allergie,
* Bij roodvonk om keelcomplicaties te voorkomen.
Huid
* Acné.
** Prurigo, jeukbulten, insectensteken R./ Vers sap Weegbree.
* Psoriasis
* Urticaria
* Couperose
Ogen
* Conjunctivitis.
* Oogvermoeidheid? Ook Ruta en Foeniculum
* Tandpijn Knabbelen op weegbreeblad (P. major)
* Aften
Homeopathie(Ø = moedertinctuur)
* Oorpijn
* Otitis media et externa
* Bedwateren
* Ontwenning van het roken
Nota: Plantago psyllium (Vlozaad) is een goed laxeermiddel vergelijkbaar met Lijnzaad.
Receptuur en Bereidingswijzen
Folium (blad) vers gebruiken op jeukbulten, insectensteken en huidallergie
Plantaginis sirupus Siroop van vers sap
Ber. sap + honing in gelijke hoeveelheden - niet koken.
Dos.: 1 koffielepel 5-10 x d.
Species pectorales
R./
Plantaginis herba 30 Ber.: mac. 1 u + even verwarmen.
Thymi herba 30 Dos.: 1 theel./kopje/3 x d.
Pini silvestri tur. 40 Ind.: kinkhoest.
R./
Tussilaginis fol. 66 Ber.: inf. 10'.
Plantaginis fol. 33 Dos.: 's morgens en 's avonds 1 kop.
Ind.: astma, chronische bronchitis, emfyseem.
Geschiedenis en Wetenschappelijk Onderzoek
Oudheid: Dioscorides, Plinius, Galenus. Kenden reeds het gebruik als adstringerend wondkruid en voor de oogkwalen.
Erasmus 'Colloquia': Persoon vrij van slangegif door het eten van Weegbree.
Blankaart: «... het water werd tegen de vuurige ogen gebruikt, en puistige aangezichten. De wortel, bladen en zaad werden tegen alle buikvloed, vrouwevloed, zaadvloed, enz. gebruikt.» Herbarius - 1698.
Culpeper: Het wortelpoeder is goed tegen tandpijn (+ pyrethrum?). Het sap of gedistilleerd water in oog druppelen tegen ontsteking. Goed wondgenezend, ook tegen slangenbeten en hondenbeten. Complete Herbal.
Onderzoek
Chang I.M. a Yun H.S.: Hepatonic activities of Plantago asiatica seeds. I. Nat. Prod. 42/6, 684 - 1979.
Duckett S.: Plantain leaf for Poison Ivy. N. Engl. J. Med. 303/10, 583 - 1980.
F. Decaux: Une varieté de Pl. à usage interne: Plantago coronopus L. Revue de phytoth. - dec. 1949.
King-Li-Pin: Contribution à l'étude de l'action diurétique des graines de P. major. Journal Physiol. et Pathol. gén. 23 - 1934.
Leclerc: Les Plant. en thérapeut. Courier médical - mai, juin 1932.
Ricci P.D., Angeli R.: Plantago ovata e Trube Della Defecazione in Geriatria. Clin. Ter. 86/5 433-439 - 1978.
Referenties
1. Bianco e.a.: J. Nat. Prod. 47/901 - 1984.
2. M. Bräutigam en G. Franz: Planta Med. 51/293 - 1985. Dtsch. Apoth. Ztg. 125/58 - 1985.
3. Farle e.a.: Farm. Glas. 37/351 - 1981.
4. J. Ehlich: Dtsch. Apoth. Ztg. 106/428 - 1958.
5. M. Felklowà: In vitro-onderzoek gaf een bactericide werking met maceraat., koud geperst sap en vloeibaar extract; geen werking voor verwarmde bereiding (infuus, decoct). De ß-glucosidase werd verstoord geen aucubigenine uit aucubine. Pharm. Zentralhalle 97/61 - 1958.
Typologie
Huibers: Past bij mensen die het op hun adem krijgen, wegens gebrek aan vertrouwen (in de anderen).
Culpeper: Venusplant geneest het hoofd wegens zijn antipathie voor Mars. Venusplant Weegbree geneest alle marsziekten.
Droog en koud in 2de graad.
Werkzame bestanddelen:
Iridoïden als aucubine (0.5-1.6%), aucubinederivaten en aucuboside; flavonoïden als apigenine, luteoline, scutellarine en baicaleïne; kiezelzuur (1.35%), slijmstoffen, looistoffen (4-6.5%), saponinen, allantoïne, choline, tryptofaan, vette oliën (10-20%), enzymen als invertase en emulsine; zuren als salicylzuur, benzoëzuur, fumarinezuur, chlorogeenzuur en neochlorogeenzuur
Werkingsmechanisme
Aan Plantago kent men diuretische en haemostyptische eigenschappen toe. Auteurs bevelen in kruidenboeken weegbree aan ter behandeling cystitis met hematurie en bloedende, jeukende hemorroïden. Dierstudies wezen uit dat hydrofiele bladextracten werkzaam zijn als bronchodilatator. Tevens constateerden onderzoekers bloeddrukverlagende eigenschappen bij dieren met een normale tensie.
Vervolgonderzoek met hydrofiele bladextracten toonde aan dat deze extracten ontstekingsremmend werken en de bloedvaten van de kleine capillairen versterken. Bladextracten versnellen de wondgenezing bij dieren. Deskundigen schrijven zowel de ontstekingsremmende als de wondgenezingsbevorderende werking van bladextracten toe aan de hoge concentratie chlorogeenzuur en neochlorogeenzuur. Auteurs halen herhaaldelijk de antibiotische eigenschappen aan. Vermoedelijk spelen werkzame bestanddelen als aucubine en haemolytische saponinen hier een belangrijke rol in. Vooral extracten bereid uit jonge bladeren hebben krachtige antibacteriële eigenschappen, onder andere tegen stafylokokkus aureus, streptokokkus betahaemolyticus en bacillus subtillus. Aucubine bezit hepatoprotectieve eigenschappen (in dierstudies).
Humane studies bewezen de effectiviteit van Plantago bij de behandeling van chronische (astmatische) bronchitis. Opvallend zijn zowel subjectieve- als objectieve verbeteringen van symptomen welke onderzoekers constateerden bij patiënten met verkoudheid of griep en die zij behandelden met weegbree bladextracten.
Uit een onderzoek waarbij wetenschappers een combinatieproduct toepasten van weegbree, agrimonie, kamille, pepermunt en sint-janskruid bleek dat deze combinatie de pijn verminderde bij patiënten met chronische maagdarmontstekingen. Na de behandeling wees onderzoek uit dat eerder geconstateerde erosie van het maagslijmvlies en andere slijmvliesbeschadigingen waren verdwenen.
CONTRA-INDICATIES
Excessief gebruik kan laxerend en/ of bloeddrukverlagend werken. Gebruik tijdens de zwangerschap of lactatieperiode wordt ontraden daar weegbree de uteruscontracties versterkt.(?)
Lees http://kunst-en-cultuur.infonu.nl/taal/25243-in-de-naam-van-weegbree.html
http://kunst-en-cultuur.infonu.nl/geschiedenis/53481-weegbree-geschiedenis-en-mythisch-gebruik.html
The results of the analyses were computed to give nutrient values per 100 g of edible portion of fresh plant. Nutrient parameters for vegetables consumed in a similar way to Plantago species, such as beet (Beta vulgaris var. cicla) and spinach (Spinacia oleracea) taken from Diem and Lentner (1975), were used for comparative purposes. The analysis of the variance effected show a significant differentiation among Plantago species (F-ratio 11.02; p<0.05). Thus a significant interaction was found between species and nutrient (F-ratio 44.99; p<0.05). Nevertheless, harvesting location did not have a significant interaction with the species and the nutrient. This fact can be explained by considering that all samples were obtained from locations with the same soil type, subjected to similar agronomic practices. The Multiple Range Test by species applied to our data indicates that the average of nitrate, oxalic acid, potassium and calcium contents tend to differ among the different Plantago species (p<0.05).
The proximate composition is presented in Table I. Moisture content was similar to other green leafy vegetables, and ranged from 85.5 g in P. media to 87.7 g in P. major. Grandi et al. (1982), indicates 85.48 g for P. major and 86.53 g for P. lanceolata, in good agreement with present data. Nevertheless, both data are higher than other for generic Plantago from Elmadfa et al. (1988) -67.0 g-, which indicates that their data may refer to another Plantaginaceae species. Protein content ranged from 2.12 g in P. lanceolata to 2.33 g in P. media. Results for P. major (2.29 g ) and P. lanceolata agree with a previous report from Grandi et al. (1982), 2.10 g and 2.08 g respectively. As previously, results are higher than those of Elmadfa et al. (1989), 1.0 g. Wilman and Derrick (1993) refer for P. lanceolata a variation between 1.19 and 2.62 g on a dry matter, which agree with our data. Common consumed vegetables as beet (1.6 g) shows lower amounts, but other green leafy vegetables, like spinach (3.2 g) have higher figures than related. This fact indicates that both, Plantago species and usually cultivated vegetables have similar protein percentages. 10
Available carbohydrates were found in low and similar percentages in the three analysed species, and ranged from 1.99 g (P. major) to 2.81 g (P. lanceolata). These results are lower than other values for vegetables as beet (5.6 g) or spinach (4.3 g), and also lower than those from Grandi et al. (1982), which referred 7.15 g in P. major and 7.95 g in P. lanceolata. On the other hand, results for P. lanceolata from Wilman and Derrick (1993) show amounts ranging between 8.8 and 17.8 g on a dry matter, which are lower than our results on a dry leaves for these species (21.0 g). These percentages are much lower than those from Elmadfa et al. (1989), 28.3 g. Fibre amounts were high, ranging from 2.25 g (P. media) to 3.88 g (P. major). These results are higher than data from vegetables like beet (1.0 g) or spinach (0.6 g). Nevertheless, these results are in good agreement with the common uses of these species, since they are mucilaginous plants. Grandi et al. (1982) provides 3.25 g for P. major and 1.54 g for P. lanceolata, which coincides with our data, except for P. major. These results agree with previous reports, which show that green leafy vegetables are rich sources of protein and minerals, but their use is limited due to the presence of indigestible fiber (Kholer and Bickoff, 1970).
The percentage of lipids obtained is low, and varied from 0.18 g (P. major) to 0.33 g (P. lanceolata). Grandi et al. (1982) found 0.31 g in P. lanceolata, which coincides with our data, however for P. major the result of this author is higher than the our. Anyway, lipid amounts are very scarce, as happens with beet (0.4 g) or spinach (0.3 g). Ash contents were high, varying between 2.67 g (P. lanceolata) and 3.19 g (P. major), higher results than others indicated by Grandi et al. (1982), 1.56 g for P. lanceolata and 1.69 g for P. major. These discrepancies could be probably attributed to differences in soil type, which induces variable amounts of mineral elements in leaves, although is no possible to discard the influence of different analytical procedures (e.g. oven temperature election). Energy content was found in agreement with cultivated vegetables, lightlylower than beet (113 kJ) or spinach (109 kJ), and ranging between 77.0 kJ (P. major) and 94.5 kJ (P. 11 lanceolata).
The vitamin C tended to differ in P. major as compared to the other two species (p<0.05), and ranging from 13.6 mg (P. lanceolata) to 45.1 mg (P. major). Our results for P. major were higher than other from Aliotta and Polio (1981), with 27.3 mg, and also higher than the result from Elmadfa et al. (1989), 20 mg. However, other authors indicates higher figures for this vitamin, such as Franke and Kensbock (1981), who referred to an amount of 92.0 mg for this Plantago. Related cultivated vegetables show figures in the same range, e.g. 34.0 mg (beet) or 51.0 mg (spinach).
Total carotenoids varied from 4.65 mg (P. media) to 8.51 mg (P. major). These results could not be comparable with the results from Aliotta and Pollio (1981) for P. major (5.28 mg of β-carotene). Nevertheless, both figures are in the same proportions, and this may indicates that $-carotene is the main carotenoid in P. major. Current vegetables show similar figures: 3.9 mg (beet) and 4.9 mg (spinach) of β-carotene.
Nitrate content in vegetables can be toxic, due to the fact that the bacterian flower could reduce it to nitrite, but the process is prevented by the stomach acidity, and therefore mainly affecting to children. The content of this salt could reach 3.25% is some vegetables, causing methemoglobinemoa (Gupta and Wagle, 1988). High levels found in some vegetables such as spinach or beet might be harmful to humans, as nitrate has been described as a potential carcinogen via transformation first to nitrite and then to nitrosamine (Belitz and Grosh 1989). Elmadfa et al. (1989) indicated 487 mg for beet, and 97 mg for spinach, while figures for P. lanceolata taken from Wilman and Derrick (1994) ranged from 16 mg to 272 mg on a dry matter, showing a wide variation. Plantago species had amounts ranging from 34.0 mg (P. lanceolata) to 101 mg (P. major), which can not be considered toxic, according to a normal consumption of leaves of these species.
Oxalic acid is an antinutritional component that could reduce the calcium bioavailability in the diet. In these species the amounts ranged from 33.5 mg (P. media) to 12 88.2 mg (P. lanceolata), which can be considered as very moderated percentages, since usual consumed vegetables show amounts of 460 mg (spinach) and 690 mg (beet).
Mineral element contents are shown in Table II. Sodium content ranged from 29 mg (P. lanceolata) to 124 mg (P. major). Percentages for P. lanceolata from Wilman and Derrick (1994) varied between 109 and 315 mg on a dry matter, and are similar to dry figures (216 mg) deduced from our data. Beet (147 mg) and spinach (62 mg) are also within the range.
Potassium amounts were lower than in other green leafy vegetables such as beet (550 mg) and spinach (662 mg). It ranged from 318 mg (P. major) to 440 mg (P. media). Elmadfa et al. (1989) provides for Plantago 350 mg, in good agreement with the exposed data. Wilman and Derrick (1994) found for P. lanceolata values from 2620 mg to 3500 mg on a dry matter, which are coincident with our value expressed this way, 2890 mg.
Calcium content ranged from 60 mg in P. lanceolata to 143 mg in P. media. Spinach and beet show 106 and 110 mg respectively, quantities in the range reported in this work. Elmadfa et al. (1991) indicates for plantain a low value, 7 mg. Wilman and Derrick (1994) provides for P. lanceolata values between 1086 mg and 1860 mg on a dry matter, which are higher than our data (448 mg). Results from Grandi et al. (1982) were also higher: 260 mg in P. lanceolata and 310 mg in P. major. P. major was significantly different from the other species (p<0.05) by considering magnesium content, which ranged from 49.3 mg (P. lanceolata) to 95.3 in P. major. Wilman and Derrick (1994) indicates for P. lanceolata amounts varying from 233 to 245 mg on a dry matter, which are lower than our results on a dry matter, 368 mg. On the other hand, Elmadfa et al. (1989) provides 33 mg for Plantago spp. As reported earlier, common consumed vegetables can be considered in the same range, with 65 mg (beet) and 62 mg (spinach).
Phosphorus content was found in low and similar percentages for all species analysed, ranging from 23.4 mg in P. major to 34.9 mg in P. media. Grandi et al. (1982) indicates 30 mg for P. lanceolata and 40 mg for P. major, in agreement with our data. 13 Wilman and Derrick (1994) found in P. lanceolata a variation between 252 and 402 mg on a dry matter, which is coincident with our data on a dry matter (368 mg). The result of Elmadfa et al. (1989) for generic “Plantain” was also in the same range (35 mg on a fresh wt.). On the other hand, common consumed vegetables show amounts in agreement with data reported here, such as 51 mg (spinach) and 29 mg (beet).
Iron values ranged from 1.54 mg (P. lanceolata) to 2.62 mg (P. media). Elmadfa et al. (1989) provides 0.5 mg for “Plantago”. The beet show 0.20 mg, while the spinach has 3.1 mg, values in good agreement to data exposed here for Plantago species.
Copper was found in similar amounts in the three species, ranging from 0.14 mg (P. lanceolata) to 0.22 mg (P. media), which is in reasonable agreements with that reported for spinach (0.20 mg) and beet (0.11 mg).
Zinc varied between 0.41 mg (P. major) and 0.97 mg (P. media). Similar nutrient values were reported by Elmadfa et al. (1989) for beet and spinach.
Manganese ranged from 0.38 mg (P. lanceolata) to 0.89 mg (P. media), which also agree with amounts reported for the spinach (0.76 mg) (Elmadfa et al., 1998)
Fatty acid contents are listed in Table III. ω3-PUFA (polyunsaturated fatty acids) play an important role in modulating human metabolism. It was found a high percentage of essential fatty acids of ω3 series, ranging from 38.97% (P. media) to 46.07% (P. lanceolata), which are constituted by derivatives from 18 and 16 C. The main fatty acid in leaves for all Plantago species was the α-linolenic acid, ranging from 38.09% (P. media) to 45.09% (P. major). Erucic acid (22:1ω9) is a toxic fatty acid that generates myocarditis, and found largely in the plant family Cruciferae (Concon, 1988). In these vegetable we found smaller figures, ranging from 2.39% (P. media) to 3.89% (P. lanceolata), and at these levels it can not be considered harmful to humans.
Nutrient ratios are given in Table IV. K/Na ratio are in agreement with the degree to which each species is halophyitic. Common consumed vegetables show ratios between 4 14 and 20, as deduced from data in Elmadafa et al. (1989). A value of 3 to 4 is considering the most adequate for the normal retention of proteins during growth (Revuelta-González, 1963). It was found to be favourable in P. major (2.56), and high in P. lanceolata (13.4). The Ca/P ratio in food must be 1 to assure good absorption of both (Belitz and Grosh, 1988). It was adequate in P. media (1.24), and high in P. major (6.25) and P. lanceolata (2.00). The ratio oxalic acid/Ca determines the calcium bioavailability in foods. Food with ratios higher than 2.5 (on a weight basis) are poor calcium source, and can be even considered as decalcifiers (Concon, 1988; Derache 1990). These vegetables have ratios ranging from 0.23 (P. media) to 1.46 (P. lanceolata), and consequently they lack decalcifing effect. Other green leafy vegetables, such as spinach (9.7) or beet (11.5) are even higher (Concon, 1988).
We believe that these plants could be used for nutrition purposes due to their demonstrated good nutritious qualities, although further exploration for bioavailability and toxicity are still required. Focussing our attention on the mean value of vitamin C of 45.1 mg/100 g in P. major, it can be concluded a minimum diet of 133 g of the fresh leaves of this species per day would provide a sufficient amount of vitamin C to meet the recommended daily allowance of 60 mg per person. This figure is interesting, considering that the daily allowance is provided from 260 g of tomato, 600 g of lettuce or 118 g of spinach (Belitz and Grosh, 1988)
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/261618820 Nutritional composition of Plantago species (P-major L., P-lanceolata, L., and P-media L.)
Plantago lanceolata
Der „Studienkreis Entwicklungsgeschichte der Arzneipflanzenkunde“ an der Universität Würzburg hat den Spitzwegerich zur Arzneipflanze des Jahres 2014 gewählt.
Verschiedene Wegerich-Arten werden schon seit Jahrtausenden in der Heilkunde genutzt, ganz besonders der Breit- und der Spitzwegerich. Heute wissen wir, dass der Spitzwegerich die stärkste Wirkung besitzt. Seine zahlreichen Inhaltsstoffe lassen positive Effekte bei Katarrhen der Atemwege und Entzündungen von Mund und Rachenschleimhaut sowie bei Wunden erwarten. Pharmakologische Laboruntersuchungen belegen diese Effekte.
Arzneipflanze des Jahres 2014: SpitzwegerichVon der Pflanze werden ausschließlich die Blätter verwendet. Zu ihren wichtigsten Inhaltsstoffen gehören die Iridoidglykoside (2 bis 3 Prozent) wie Aucubin und Catalpol, die eine antibakterielle Wirkung zeigen, sowie Schleimstoffe (Polysaccharide 2 bis 6 Prozent), die reizmildernde Effekte besitzen. Sie bilden eine Art schützenden Film über die Schleimhaut in Mund und Rachen. Damit kann der Spitzwegerich lästigen Hustenreiz mindern. Hinzu kommen Gerbstoffe, die mit 6,5 Prozent Anteil die größte Inhaltsstoffgruppe bilden. Sie wirken zusammenziehend (adstringierend) und blutstillend und stabilisieren die Schleimhäute. Weitere Inhaltsstoffe, die an der Heilwirkung des Spitzwegerichs beteiligt sein könnten, sind Flavonoide, Kaffeesäurederivate, Saponin, Kieselsäure und Mineralstoffe wie Zink und Kalium.
Von deutschen und europäischen Kommissionen wurde der Einsatz des Spitzwegerichs zur Linderung von Schleimhaureizungen im Mund und Rachenraum und dem damit verbundenen trockenen Husten anerkannt, wie vom „Herbal Medicinal Product Commitee“ (HPMC), das auf europäischer Ebene die Kompetenz zur eigenverantwortlichen Beurteilung von pflanzlichen Arzneimitteln inne hat.
Das Symptom Husten ist eigentlich der Ausdruck eines schützenden Reflexes, der die Atemwege reinigen soll. Durch die Reinigung der sensiblen Nervenfasern wird dieser Reflex ausgelöst, auch wenn, wie bei einem trockenen Husten, kein Fremdkörper entfernt werden muss. In diesen Fällen ist die reizmildernde Wirkung der pflanzlichen Inhaltsstoffe des Spitzwegerichs wertvoll.
Äußerlich kann Spitzwegerichkraut auch bei Entzündungen der Haut verwendet werden. In der Erfahrungs- und Volksmedizin gilt Spitzwegerich seit langem als ein gutes Mittel zur ersten Wundversorgung und bei Insektenstichen.
Allerdings liegen keine aktuellen klinischen Studien zum Spitzwegerich vor, deshalb ist diese Wahl auch als Aufruf an die Forschung zu verstehen.
Zum Namen: Nicht ganz eindeutig ist die Bedeutung von „Wegerich“. Der berühmte Volkskundler Heinrich Marzell schreibt in seinem großen Lexikon der deutschen Pflanzennamen, dass es sich einfach um einen Männernamen wie „Guter Heinrich“ handle. Andere – wie Gerhard Madaus - leiten den Namen vom althochdeutschen Wort „rich“ ab, was „König“ bedeutet. Wegerich hieße demnach „König des Weges“. Nachdem vor allem der sehr robuste Mittlere Wegerich selbst auf befahrenen Wegen gedeiht, erscheint dies zumindest sinnvoll.
Den Spitzwegerich findet man allerdings mehr Wegrändern und in trockenen Weisen. Seinen Namen verdankt er den spitz zulaufenden, langen, schmalen, aufrecht stehenden Blättern, die eine Bodenrosette bilden. Je nach den Bedingungen kann die Pflanze 5 bis 60 cm hoch werden. Die Blütezeit reicht von Mai bis in den September. Ursprünglich auf der nördlichen Halbkugel beheimatet ist er heute nahezu weltweit anzutreffen.
Geschichte: Von der Antike bis in die Neuzeit hinein galt als wichtigstes Einsatzgebiet des Breit- und Spitzwegerichs die Stillung von Blutungen bei Wunden, in den Luftwegen, im Darm und gegen sehr starke Menstruationsblutung. Auch andere Verletzungen wie Brandwunden, Insektenstiche und Tierbisse sowie Knochenbrüche werden häufig als Einsatzgebiete genannt. Sogar Shakespeare erwähnt „plantain“ (Plantago) mehrfach in seinen Werken als Mittel gegen Hautverletzungen.
Daneben spielten die Wegerich-Arten bei der Behandlung von Asthma, Geschwülsten und Geschwüren - insbesondere in der Mundhöhle - eine große Rolle und wurden auch bei Zahn- und Ohrenschmerzen sowie gegen brennende Augen eingesetzt.
Planta Med 2000 Feb;66(1):48-53
Evidence for bioadhesive effects of polysaccharides and polysaccharide-containing herbs in an ex vivo bioadhesion assay on buccal membranes. Schmidgall J, Schnetz E, Hensel A.
Institute for Pharmaceutical Biology, Friedrich-Alexander Universitat Erlangen-Nurnberg, Germany.
Aqueous extracts of polysaccharide-containing plants are widely used in therapy for irritated mucus membranes in the pharynx region. In order to prove the existence of mucilaginous effects of polysaccharide hydrocolloids on epithelia an ex vivo system based on porcine buccal membranes was established. The tissue culture was stable and there was no indication of cytolytic processes during the 5 hour incubation period. This was confirmed through histological studies and the respective LDH values as toxicity marker. The test system was shown to discriminate the adhesive effects of different raw polysaccharides, obtained from a variety of medicinal plants. While polysaccharides from Altheae officinalis, Plantago lanceolata, Malva moschata, or Tilia cordata showed only moderate bioadhesion to epithelial tissue, strong adhesive processes were observed with polysaccharides from Fucus vesiculosus and Calendula officinalis. The adhesive effects were concentration-dependent. Histological studies of membranes, incubated with a fluorescence-labelled rhamnogalacturonan, indicated the presence of distinct polysaccharide layers on the apical membrane surface. With these results, adsorption effects of certain polysaccharides on mucus membranes were shown for the first time. Such effects suggest that this may account, at least in part, for the therapeutic effects of mucilage-containing plants in the treatment of irritated buccal membranes.
Plantago major L. (Plantaginaceae)
Synonym(s)
Common Plantain, General Plantain, Greater Plantain
Part(s) Used
Leaf
Pharmacopoeial and Other Monographs
BHP 1996(G9)
Complete German Commission E(G3)
Martindale 33rd edition(G67)
PDR for Herbal Medicines 2nd edition(G36)
Legal Category (Licensed Products)
Plantain is not included in the GSL.(G37)
Constituents
Acids
Benzoic acid, caffeic acid, chlorogenic acid, cinnamic acid, p-coumaric acid, ferulic acid, fumaric acid, gentisic acid, p-hydroxybenzoic acid, neochlorogenic acid, salicylic acid, syringic acid, ursolic acid, vanillic acid;(1,2) oleanolic acid and ascorbic acid.
Alkaloids
Trace (unspecified),(3,4) boschniakine and the methyl ester of boschniakinic acid(5)
Amino acids
DL-α-Alanine, asparagine, L-histidine, DL-lysine, DL-leucine, serine and tryptophan.(6)
Carbohydrates
L-Fructose, D-glucose, planteose, saccharose, stachyose, d-xylose, sorbitol, tyrosol, mucilage and gum.(7)
Flavonoids
Apigenin, baicalein, scutellarein, baicalin, homoplantaginin, nepitrin, luteolin, hispidulin and plantagoside.(8–10)
Iridoids
Aucubin, aucubin derivatives, plantarenaloside, aucuboside and melitoside.(5,11,12)
Tannins
4%. Unspecified.
Other constituents
Choline, allantoin, invertin and emulsin (enzymes), fat 10–20%, resin, saponins, steroids(13) and thioglucoside.
Food Use
Plantain leaf is not used in foods. A related species, Plantago lanceolata L., is listed by the Council of Europe as a natural source of food flavouring (category N2). This category indicates that P. lanceolata can be added to foodstuffs in small quantities, with a possible limitation of an active constituent (as yet unspecified) in the final product.(G16) In the USA, plantain is listed by the Food and Drugs Administration (FDA) as a Herb of Undefined Safety.(G22)
Dosage
Dried leaf
2–4 g or by infusion three times daily.(G7)
Liquid extract
2–4 mL (1 : 1 in 25% alcohol) three times daily.(G7)
Tincture
2–4 mL (1 : 5 in 45% alcohol) three times daily.(G7)
Pharmacological Actions
In vitro and animal studies
An aqueous extract has been reported to possess bronchodilatory activity in guinea–pigs. It was more effective against acetylcholine–induced contraction, than towards constriction induced by histamine or serotonin.(14) The bronchodilatory activity of plantain in guinea–pigs has been reported to be less active and of shorter duration compared to salbutamol or atropine.(15)
Hypotensive activity in normotensive, anaesthetised dogs has been documented; 125 mg/kg extract was found to decrease arterial blood pressure by 20–40 mmHg.(16)
An aqueous extract, reported to contain flavonoids, saponins, steroids and alkaloids, was shown to possess anti–inflammatory activity in the rat using various models of inflammation, and a strengthening of capillary vessels has also been documented.(13) However, an extract was found to exhibit minimal (11%) inhibition of carrageenan–induced rat paw oedema.(17) Leaf extracts in hexane have shown potent wound–healing activity in rabbits; the effect was primarily attributed to C26–C30 alcohols present in the extract.(18) Both the anti–inflammatory and wound–healing activities of plantain have been attributed to the high content of chlorogenic and neochlorogenic acids.(2)
Aucubin and a haemolytic saponin fraction have exhibited antibiotic activity towards Micrococcus flavus and Staphylococcus aureus (aucubin only).(19) Antibacterial activity towards Bacillus subtilis has been documented for the fresh plant juice, which was also found to lack activity towards Gram–positive organisms and fungi.(20) A negative response to cytotoxic, antitumour and antiviral activity was also reported for the plant juice.(20)
A mild laxative action has been reported in mice administered iridoid glycosides, including aucubin.(21) Plantain seed is sometimes used as a substitute for ispaghula (a bulk laxative).(G45)
Plantain has been documented to lower concentrations of total plasma lipids, cholesterol, β-lipoproteins and triglycerides in rabbits with experimental atherosclerosis.(22) Plantain has been reported to be useful in lowering plasma cholesterol concentrations.(23)
A tonus–raising effect on isolated guinea–pig and rabbit uterus tissue has been documented for an aqueous extract at a dose of 1–2 mg/cm3.(24)
Aucubin has been stated to be the active principle responsible for a hepatoprotective effect documented for plantain.(25)
Clinical studies
Plantain has been reported to be effective in the treatment of chronic bronchitis of a spastic or non–spastic nature.(14,26,27) A pronounced improvement in both subjective and objective symptoms of the common cold following treatment with plantain has also been reported.(28) Plantain, in combination with agrimony, German chamomile, peppermint and St. John’s wort, has been documented to provide pain relief in patients with chronic gastroduodenitis.(29) Following treatment, previously diagnosed erosions and haemorrhagic mucous changes were stated to have disappeared.
Side–effects, Toxicity
Allergic contact dermatitis to plantain has been reported.(G51) The green parts of the plant are thought to yield a mustard oil–type of thioglucoside, which releases an irritant principle (isothiocyanate) upon enzymatic hydrolysis.(G51) The seed may also cause sensitisation and dermatitis. Plantain is reported to be of low toxicity with LD50 values in the rat documented as 1 g/kg (intraperitoneal injection) and greater than 4 g/kg (by mouth).(15)
Contra–indications, Warnings
Plantain may cause a contact allergic reaction; it induces the formation of IgE antibodies, which may cross–react to psyllium.(30) Excessive doses may exert a laxative effect and a hypotensive effect.
Pregnancy and lactation
In vitro uterotonic activity has been documented for plantain. In view of this, excessive use of plantain, which may also exert a laxative effect, should be avoided during pregnancy.
Pharmaceutical Comment
The constituents of plantain are well documented and the reputed antihaemorrhagic properties are probably attributable to the tannin constituents. In addition, bronchospastic activity has been documented in both animal and human studies, and may warrant further research. The toxicity of plantain is reported to be low but excessive ingestion should be avoided. The bulk laxative ispaghula consists of the dried seeds of related species Plantago psyllium, P. ovata and P. indica.(G45)
References
Andrzejewska-Golec E, Swiatek K. Chemotaxonomic studies on the genus Plantago II. Analysis of phenolic acid fraction. Herba Pol 1986; 32: 19–31.
Maksyutina NP. Hydroxycinnamic acids of Plantago major and Pl. lanceolata. Khim Prirodn Soedin 1971; 7: 795.
Smolenski SJ et al. Alkaloid screening. IV. Lloydia 1974; 37: 30–61.(PubMed)
Pailer M, Haschke-Hofmeister E. Inhaltsstoffe aus Plantago major. Planta Med 1969; 17: 139–145.(PubMed)
Popov S et al. Cyclopentanoid monoterpenes from Plantago species. Izv Khim 1981; 14: 175–180.
Maksyutin GV. Amino acids in Plantago (plantain) major leaves and Matricaria recutita inflorescences. Rastit Resur 1972; 8: 110–112.
Tomoda M et al. Plant mucilages. XXIX. Isolation and characterization of a mucous polysaccharide, plantago–mucilage A, from the seeds of Plantago major var. asiatica. Chem Pharm Bull 1981; 29: 2877–2884.
Lebedev-Kosov VI. Flavonoids of Plantago major. Khim Prirodn Soedin 1976; 12: 730.
Lebedev-Kosov VI et al. Flavonoids of Plantago major. Khim Prirodn Soedin 1977; 13: 223.
Endo T et al. The glycosides of Plantago major var. japonica Nakai. A new flavone glycoside, plantagoside. Chem Pharm Bull 1981; 29: 1000–1004.
Oshio H, Inouye H. Two new iridoid glucosides of Plantago asiatica. Planta Med 1982; 44: 204–206.
Andrzejewska-Golec E, Swiatek K. Chemotaxonomic studies on the genus Plantago I. Analysis of the iridoid fraction. Herba Pol 1984; 30: 9–16.
Lambev I et al. Study of the anti–inflammatory and capillary restorative activity of a dispersed substance from Plantago major L. Probl Vatr Med 1981; 9: 162–169.
Koichev A et al. Pharmacologic–clinical study of a preparation from Plantago major. Probl Pneumol Ftiziatr 1983; 11: 68–74.
Marcov M et al. Pharmacologic study of the influence of the disperse substance extracted from Plantago major on bronchial smooth muscles. Probl Vatr Med 1980; 8: 132–139.
Kyi KK et al. Hypotensive property of Plantago major Linn. J Life Sci 1971; 4: 167–171.
Mascolo N et al. Biological screening of Italian medicinal plants for anti–inflammatory activity. Phytother Res 1987: 1: 28–31.
Mironov VA et al. Physiologically active alcohols of Plantago major. Khim-Farm Zh 1983; 17: 1321–1325.
Tarle D. Antibiotic effect of aucubin, saponins and extract of plantain leaf – herba or folium Plantaginis lanceolata. Farm Glas 1981; 37: 351–354.
Lin Y-C et al. Search for biologically active substances in Taiwan medicinal plants I. Screening for anti–tumor and anti-microbial substances. Chin J Microbiol 1972; 5: 76–78.
Inouye H et al. Purgative activities of iridoid glycosides. Planta Med 1974; 25: 285–288.(PubMed)
Maksyutina NP et al. Chemical composition and hypocholesterolemic action of some drugs from Plantago major leaves. Part I. Polyphenolic compounds. Farm Zh (Kiev) 1978; 4: 56–61.
Ikram M. Medicinal plants as hypocholesterolemic agents. J Pak Med Assoc 1980; 30: 278–279.(PubMed)
Shipochliev T. Extracts from a group of medicinal plants enhancing the uterine tonus. Vet Med Nauki 1981; 18: 94–98.(PubMed)
Chang I-M, Yun (Choi) HS. Plants with liver–protective activities: pharmacology and toxicology of aucubin. In: Chang HM et al., eds. Advances in Chinese Medical Material Research. Singapore: World Scientific, 1985: 269.
Koichev A. Complex evaluation of the therapeutic effect of a preparation from Plantago major in chronic bronchitis. Probl Vatr Med 1983; 11: 61–69.
Matev M et al. Clinical trial of Plantago major preparation in the treatment of chronic bronchitis. Vatr Boles 1982; 21: 133–137.
Koichev A. Study on the therapeutic effect of different doses from the preparation Plantago major in cold. Prob Vatr Med 1982; 10: 117–124.
Chakarski I et al. Clinical study of a herb combination consisting of Agrimonia eupatoria, Hipericum perforatum, Plantago major, Mentha piperita, Matricaria chamomila for the treatment of patients with gastroduodenitis. Probl Vatr Med 1982; 10: 78–84.
Rosenberg S et al. Serum IgE antibodies to psyllium in individuals allergic to psyllium and English plantain. Ann Allergy 1982; 48: 294–298.(PubMed)