Nierstenen zijn stenen die gevormd worden in de nieren wanneer de urine meer potentieel kristalvormende stoffen - calcium, oxaalzuur, urinezuur - bevat dan de vloeistof in de urine kan oplossen en/of wanneer de urine te weinig stoffen bevat die kristalvorming tegengaan – citraat (citroenzuur), magnesium en fytinezuur.
Er zijn verschillende soorten nierstenen, afhankelijk van hun samenstelling. De meest voorkomende zijn calciumoxalaat stenen.Kleine nierstenen worden meestal gewoon vanzelf verwijderd via de urine, maar grote nierstenen moeten eerst kleiner gemaakt worden om de urinewegen te kunnen passeren. Soms moeten stenen chirurgisch verwijderd worden.
Wanneer men na het behandelen van nierstenen niets verandert aan voedingsgewoonten, is de kans groot dat er nieuwe nierstenen gevormd worden. Mensen met nierstenen of mensen die gemakkelijk nierstenen vormen, hebben bovendien een verhoogd risico op chronische nierziekte of een verminderde nierfunctie.
Voeding
Veel water drinken en veel plantaardige voeding eten zijn de belangrijkste factoren voor de preventie van nierstenen. Veel groenten en fruit eten verlaagt het risico op alle soorten nierstenen. Groenten en fruit bevatten veel water, hebben een alkaliserend (ontzurend) effect, zijn een bron van citroenzuur, fytinezuur, kalium, magnesium en vezels en hebben een gunstig effect op de darmflora.
Geen of weinig groenten en fruit eten creëert omstandigheden waarin nierstenen gemakkelijker gevormd worden.
Van verschillende planten en plantaardige voedingsmiddelen en van de polyfenolen die erin aanwezig zijn, is aangetoond dat ze de vorming van nierstenen voorkomen. Ze doen dat door de urine alkalischer (minder zuur) te maken, door de concentratie citraat, magnesium en kalium in de urine te verhogen, door de concentratie calcium, oxalaat en urinezuur te verlagen en door kristalvorming tegen te gaan. Ze kunnen zelfs nierstenen oplossen (Nirumand MC, 2018).
Planten die mogelijk nierstenen voorkomen of oplossen
groene thee (Camellia sinensis)
framboos (Rubus idaeus)
peterselie (Petroselinum crispum)
granaatappel (Punica granatum)
wilde marjolein (Origanum vulgare)
javaanse nierthee (Orthosiphon stamineus)
grote brandnetel (Urtica dioica)
zwarte komijn (Nigella sativa)
mastiek (Pistacia lentiscus)
akkerscherm (Ammi visnaga)
roselle (Hibiscus sabdariffa)
Indische meekrap (Rubia cordifolia)
Indische nachtschade (Solanum xanthocarpum)
Polyfenolen die nierstenen voorkomen of oplossen
curcumine, quercetine, catechine, epicatechine, epigallocatechinegallaat, rutine, hyperoside, diosmine
Referentie
Nirumand MC, Hajialyani M, Rahimi R, et al. Dietary Plants for the Prevention and Management of Kidney Stones: Preclinical and Clinical Evidence and Molecular Mechanisms. Int J Mol Sci. 2018 Mar 7;19(3). pii: E765.
Green Tea
Green tea (Camellia sinensis) has long been used as an herbal remedy with several polyphenols making them potent antioxidants. Although it is an oxalate-rich natural agent and could not be recommended for renal calculi formed by calcium oxalate [41], due to the anti-lithogenic, anti-atherosclerotic, and antioxidant effects of green tea, it has received considerable attention for use as a dietary supplement in patients suffering from nephrolithiasis and urinary stones. The protective effect of green tea is most likely due to the presence of polyphenols and other phytochemicals. Green tea catechins, including epigallocatechin gallate (EGCG), epigallocatechin (GGC), epicatechin gallate (ECG), and epicatechin (EC), provide protective effects against oxalate-induced toxicity [23,41]. Green tea supplementation inhibited the growth of crystals in kidney of rats, diminished the excretion of oxalate [24,41], and exerted inhibitory effects on the activities of γ-glutamyltranspeptidase and N-acetyl-β-d-glucosaminidase . It decreased the supersaturation of brushite [45], down-regulated the osteopontin (OPN) protein expression, increased superoxide dismutase (SOD), elevated Bcl-2 expression, and decreased the apoptotic index in the rat model of kidney stones]. These results, altogether, demonstrated that green tea rich in antioxidants possesses a protective effect against development of calcium stones in the kidneys. Kim J.W., Choi J.S., Yoon G.S., Yang E.K., Kim D.Y. Effect of green tea on calcium oxalate stone formation and excretion in ethylene glycol-treated rats. Korean J. Urol. 2005;46:299–305. [Google Scholar]. Itoh Y., Yasui T., Okada A., Tozawa K., Hayashi Y., Kohri K. Preventive effects of green tea on renal stone formation and the role of oxidative stress in nephrolithiasis. J. Urol. 2005;173:271–275. doi: 10.1097/01.ju.0000141311.51003.87. [DOI] [PubMed] [Google Scholar]
Raspberry (Rubus idaeus,
Raspberry (Rubus idaeus, from Rosaceae family), is a commercial fruit crop grown in many European and Mediterranean countries and has been widely used for nutritional and medicinal purposes . Raspberry has been found to be capable of expelling stones from the urinary tract even after acute administration. The prophylactic effect of raspberry on calcium oxalate renal stone formation has been reported. Its aqueous extract exerted significant preventive effects on the deposition and precipitation of calcium oxalate in the kidney and eliminated the calcium oxalate matrix. The generation of malondialdehyde (MDA) and protein carbonyls was suppressed in raspberry-treated animals with decreased levels of urinary calcium and phosphorus. The presence of polyphenols and alteration in the level of stone formation inhibitors (such as citrate, magnesium, and glycosaminoglycans) may be involved in the mechanism by which raspberry inhibited the growth of calculus . The methanolic extract of raspberry was found to be a potent diuretic via inhibiting the activity of aldosterone or epithelial sodium channels. Ghalayini I.F., Al-Ghazo M.A., Harfeil M.N. Prophylaxis and therapeutic effects of raspberry (Rubus idaeus) on renal stone formation in Balb/c mice. Int. Braz. J. Urol. 2011;37:259–267. doi: 10.1590/S1677-55382011000200013. [DOI] [PubMed] [Google Scholar]. Zhang Y., Zhang Z., Yang Y., Zu X., Guan D., Guan Y. Diuretic activity of Rubus idaeus L (Rosaceae) in rats. Trop. J. Pharm. Res. 2011;10 doi: 10.4314/tjpr.v10i3.15. [DOI] [Google Scholar]
Rubia cordifolia / Meekrap
Rubia cordifolia (madder or Indian madder) belongs to the coffee family (Rubiaceae) and has been used as a natural food colorant. Phytochemical screening of R. cordifolia has revealed the presence of various bioactive phytochemicals, including glycosides, triterpenoids, anthraquinones, saponins, quinones, and tannins, which make it advantageous for the treatment of several disorders, such as jaundice, diabetic foot ulcer, and cardiovascular ailments. It was found to be effective in the treatment of different kidney diseases and possessed preventive effects on urinary stones. The hydro-alcoholic extract of R. cordifolia roots successfully inhibited the excretion of calcium in ethylene glycol-induced renal stone formation in rats, and, more importantly, prevented hyperoxaluria and hypocitraturia by decreasing the formation of urinary oxalate and regulating the re-adsorption of tubular citrate (increasing the level of urinary citrate), respectively. The preventive role of this extract against kidney stone formation was also due to its inhibitory effect on the deposition and growth of calcium oxalate crystals by restoring magnesium levels, its preventive effect on proteinuria, and its suppressive effect on acid uric excretion. The nephro-protective effect of this medicinal and nutritional plant could be largely attributed to its antioxidant properties . Divakar K., Pawar A., Chandrasekhar S., Dighe S., Divakar G. Protective effect of the hydro-alcoholic extract of Rubia cordifolia roots against ethylene glycol induced urolithiasis in rats. Food Chem. Toxicol. 2010;48:1013–1018. doi: 10.1016/j.fct.2010.01.011. [DOI] [PubMed] [Google Scholar]. J.K., Jung S.J., Jung J.H., Fang Z., Lee C.S., Seo C.S., Moon D.C., Min B.S., Kim M.R., Woo M.H. Anticancer Constituents from the Roots of Rubia cordifolia L. Chem. Pharm. Bull. 2008;56:213–216. doi: 10.1248/cpb.56.213. [DOI] [PubMed] [Google Scholar]. Lodi S., Sharma V., Kansal L. The protective effect of Rubia cordifolia against lead nitrate-induced immune response impairment and kidney oxidative damage. Indian J. Pharm. 2011;43:441–444. doi: 10.4103/0253-7613.83118. [DOI] [PMC free article] [PubMed] [Google Scholar]
Parsley / Peterselie
Parsley (Petroselinum crispum) belonging to the family Umbelliferae is commonly known as an herb, spice, and vegetable, and is widely distributed in Western Asia, the Mediterranean, and several European countries . Various pharmacological activities, such as antioxidant, anti-inflammatory, diuretic, nephro-protective, enzyme-modulatory, and anti-hypertensive actions, have been reported for this plant [52,54]. These beneficial activities could be due to its bioactive constituents, including flavonoids, carotenoids, coumarins, tocopherol, and ascorbic acid [55]. Parsley and its extracts have been used potentially as a complementary/alternative treatment for various renal diseases . P.crispum has been used as a promising anti-urolithiasis remedy. Its ethanolic extract prevented the nucleation and precipitation of calcium oxalate, urine supersaturation, and urinary protein excretion in a rat model of calcium stone formation . The high content of chlorophyll and magnesium in parsley is a reason for its inhibitory effect toward the dehydration of calcium oxalate and hyperoxaluria, respectively. Parsley was found to be effective in regulating urinary pH at a value at which calcium oxalate crystals could be maintained as dispersed particles, and the elimination of these crystals could be facilitated . Al-Yousofy F., Gumaih H., Ibrahim H., Alasbahy A. Parsley! Mechanism as antiurolithiasis remedy. Am. J. Clin. Exp. Urol. 2017;5:55. [PMC free article] [PubMed] [Google Scholar]. Jafar S., Mehri L., Hadi B. The antiurolithiasic activity of aqueous extract of Petroselinum sativum on ethylene glycolinduced kidney calculi in rats; Proceedings of the International Conference on Chemical, Environmental and Biological Sciences; Pattaya, Thailand. 7–8 October 2011; pp. 1577–1583. [Google Scholar]. Saeidi J., Bozorgi H., Zendehdel A., Mehrzad J. Therapeutic effects of aqueous extracts of Petroselinum sativum on ethylene glycol-induced kidney calculi in rats. Urol. J. 2012;9:361–366. [PubMed] [Google Scholar]
Zhang H., Chen F., Wang X., Yao H.-Y. Evaluation of antioxidant activity of parsley (Petroselinum crispum) essential oil and identification of its antioxidant constituents. Food Res. Int. 2006;39:833–839. doi: 10.1016/j.foodres.2006.03.007. [DOI] [Google Scholar]
54.Moazedi A., Mirzaie D., Seyyednejad S., Zadkarami M., Amirzargar A. Spasmolytic effect of Petroselinum crispum (Parsley) on rat’s ileum at different calcium chloride concentrations. Pak. J. Biol. Sci. 2007;10:4036–4042. doi: 10.3923/pjbs.2007.4036.4042. [DOI] [PubMed] [Google Scholar]
55.Rezazad M., Farokhi F. Protective effect of Petroselinum crispum extract in abortion using prostadin-induced renal dysfunction in female rats. Avicenna J. Phytomed. 2014;4:312–319. [PMC free article] [PubMed] [Google Scholar]
56.Kreydiyyeh S.I., Usta J. Diuretic effect and mechanism of action of parsley. J. Ethnopharmacol. 2002;79:353–357. doi: 10.1016/S0378-8741(01)00408-1. [DOI] [PubMed] [Google Scholar]
57.Vamenta-Morris H., Dreisbach A., Shoemaker-Moyle M., Abdel-Rahman E.M. Internet claims on dietary and herbal supplements in advanced nephropathyruth or myth. Am. J. Nephrol. 2014;40:393–398. doi: 10.1159/000368724. [DOI] [PubMed] [Google Scholar]
58.Kuźma P., Drużyńska B., Obiedziński M. Optimization of extraction conditions of some polyphenolic compounds from parsley leaves (Petroselinum crispum) Acta Sci. Pol. Technol. Aliment. 2014;13:145–154. doi: 10.17306/J.AFS.2014.2.4. [DOI] [PubMed] [Google Scholar]
Pomegranate (Punica granatum)
Pomegranate has long been used in traditional medicine. Pomegranate fruit, known as “a pharmacy unto itself” [59], is a rich source of polyphenols, alkaloids, and anthocyanins (flavonoid antioxidants), which are highly capable of scavenging free radicals [60,61]. All parts of this plant can be used in traditional remedies for preventive and therapeutic purposes. Pomegranate seeds were used for regulating urine discharge and the burning sensation of urine; its seed oil, juice, flowers, and peel are used for protection against nephrotoxicity [62,63,64,65], and the extracts for renal failure [66] and renal arteries [67]. The anti-hypercalciuria and anti-urolithiasis effects of this plant attracted considerable attention toward pomegranate for use in the prevention of renal calculus formation. Its therapeutically beneficial phytochemicals are responsible for muscle relaxation in the urinary and biliary tract; consequently, stones can be easily removed from the kidney [12]. Administration of the methanolic extract of pomegranate to the rat model of urolithiasis (induced by 28 days of treatment with ethylene glycol) dose-dependently inhibited the inflammation mediated by ethylene glycol, and consequently regulated the levels of oxalates, calcium, and phosphates. The methanolic extract was also found to be more protective in comparison with the chloroform extract, which might be due to the lipophilic nature of pomegranate constituents [12]. The extracts and juice of pomegranate significantly inhibited the hyperoxaluria-induced oxidative renal tubular damages (due to its antioxidants and anti-lipid-peroxidation [68]) by reducing the levels of reactive oxygen species (ROS), inducible nitric oxide synthase (iNOS), and nuclear factor-κB (NF-κB) [61,69] and p38-mitogen-activated protein kinase (p38-MAPK) [69], and regulating urea, creatinine, and ureic acid [12]. Beside the animal studies, the nephro-protective roles of pomegranate extract on the calcium-containing lithiasis formation in humans (18–70 years old) with recurrent stone formation have been clinically studied. The daily supplementation of patients with pomegranate extract caused significant down-regulation of serum paraoxonase1 (PON1) arylesterase activity together with decreasing supersaturation of calcium oxalate, indicating that this intervention could successfully control the risk of renal stone formation [42].
Pistacia lentiscus /
Pistacia lentiscus (Anacardiacceae) is a common evergreen dioecious shrub, distributed in a wide range of habitats, specifically in the eastern Mediterranean region [70]. In folk medicine, it is known as a medicinal and nutritional plant with various therapeutic potentials, such as antioxidant, anti-microbial, diuretic, anti-lipid peroxidation, and anti-urolithiasis activities [70,71]. The fruit extract has demonstrated in vitro potential in protecting human kidney (HK)-2 cells against proximal tubular injury mediated by calcium oxalate monohydrate (COM). It significantly inhibited the cell death induced by COM and suppressed the level of E-cadherin, as well as H2O2. It attenuated the attachment and internalization of calcium oxalate monohydrate crystals to epithelial tubular cells by the mechanism in which the interaction of active phytochemicals of the extract (mainly polyphenols) with cells inhibited its binding to the surface of the cells [38]. Therefore, P. lentiscus could be considered as a promising natural remedy for antilithiatic purposes.
Solanum xanthocarpum / Kantakari
Solanum xanthocarpum, also known as “yellow-fruit nightshade” and “Thai green eggplant”, is a famous and widely used edible traditional medicinal plant in India. The seeds and fruits are consumed as foods and vegetables. This plant is used as a common remedy for the treatment of various renal diseases, including difficulty in urination, urinary infections, nephrotoxicity, and urolithiasis [30,73,74,75]. The fruit of S. xanthocarpum is a rich source of steroidal glycol-alkaloids, coumarins, triterpenes, and saponins . The petroleum-ether extract of the fruits exhibited nephro-protective activity, possibly due to the anti-lipid peroxidation and antioxidant effects of the plant constituents. The methanolic extract was found to be successful in preventing and inhibiting nephrolithiasis, renal hyperoxaluria, crystalluria, and supersaturation of calcium oxalate. It exerted antioxidant (by increasing SOD and glutathione (GSH) levels) and diuretic activities and also diminished the excretion of phosphorous in the calculi-induced rats [30]. The fruits of this plant contain saponins with high antilithiatic activity. The saponin-rich fraction prepared from fruits of S. xanthocarpum showed prevention of in vitro calcium oxalate crystal nucleation and aggregation in artificial urine solution, and inhibition of pathological changes due to lithogenic treatment, including polyuria, damage of renal function, oxidative stress, and crystalluria in ethylene glycol-induced urolithiasis in rats. The aforementioned fraction also increased levels of glycosaminoglycan, a stone inhibitor macromolecule found in urine, and accelerated the glomerular filtration]. Patel P., Patel M., Saralai M., Gandhi T. Antiurolithiatic effects of Solanum xanthocarpum fruit extract on ethylene-glycol-induced nephrolithiasis in rats. J. Young Pharm. 2012;4:164–170. doi: 10.4103/0975-1483.100022. [DOI] [PMC free article] [PubMed] [Google Scholar]
Urtica dioica
Urtica dioica or “Stinging Nettle”, which belongs to the nettle genus of Urticaceae family, is used as tea . It has shown a long history of beneficial therapeutic effects toward urinary ailments, specifically with the urinary tract and kidney stones. Its major bioactive phytochemicals include flavonoids, anthocyanins, and saponins. These phytoconstituents provide the possibility of inhibition of calcium and oxalate deposition and crystals growth. Supplementation of the methanolic extract U. dioica to rats with kidney stones (induced by ethylene glycol and ammonium chloride) was found to be associated with decreased urinary creatinine level and reduction of supersaturation of lithogenic enhancing agents. This extract potentially dissolved the lithiasis and overcame the hyperoxaluria and crystalluria induced by ethylene glycol. Zhang H., Li N., Li K., Li P. Protective effect of Urtica dioica methanol extract against experimentally induced urinary calculi in rats. Mol. Med. Rep. 2014;10:3157–3162. doi: 10.3892/mmr.2014.2610. [DOI] [PubMed] [Google Scholar]
Dolichos biflorus
Dolichos biflorus (horse gram) is a nutritional and medicinal plant native to India, where its seeds are used to prepare soup . The seeds are acclaimed in ayurvedic literature to have litholytic, free radical-scavenging, and anti-nephrotoxic effects . The beneficial effect of this plant can be attributed to the existence of various phytoconstituents in the seeds, including phenolic compounds (such as quercetin), alkaloids, phytosterols (such as β-sitosterol), saponins, glucosides (such as β-galactosidases and α-mannosides) [39,40]. Various extracts from seeds, including aqueous, chloroform, and benzene, dissolved calcium oxalate stones in experimental models of kidney stones. Aqueous extract showed the highest dissolution of stones compared to other extracts [40]. In a synthetic urine system for calcium oxalate crystallization, the hydro-alcoholic extract of seeds showed inhibitory activity on nucleation and aggregation of calcium oxalate monohydrate crystals [39]. Administration of D. biflorus to patients with calcium oxalate renal calculi decreased the recurrence of calcium oxalate stones and had a better result than the use of potassium citrate in these patients . Saha S., Verma R.J. Evaluation of hydro-alcoholic extract of Dolichos biflorus seeds on inhibition of calcium oxalate crystallization. J. Herb. Med. 2015;5:41–47. doi: 10.1016/j.hermed.2014.11.001. [DOI] [Google Scholar]. Atodariya U., Barad R., Upadhyay S., Upadhyay U. Anti-urolithiatic activity of Dolichos biflorus seeds. J. Pharmacogn. Phytochem. 2013;2:45051. [Google Scholar]
Ammi visnaga / Khella
Teas prepared from the fruits of Ammi visnaga have been traditionally used by patients with renal stones in Egypt [32]. The aqueous extract of this fruit accelerated the dissolution of cystine stones. The fruit and its two major constituents, namely khellin and visnagin, showed beneficial effects in the management of kidney stone disease caused by hyperoxaluria in male rats through reduction of the incidence of calcium oxalate crystal deposition, increasing urinary excretion of citrate along with a decrease of oxalate excretion . Vanachayangkul P., Chow N., Khan S., Butterweck V. Prevention of renal crystal deposition by an extract of Ammi visnaga L. and its constituents khellin and visnagin in hyperoxaluric rats. Urol. Res. 2011;39:189–195. doi: 10.1007/s00240-010-0333-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
Nigella sativa / Zwarte komijn
Nigella sativa has been used in Iranian traditional medicine for treatment of urinary stones. Ethanolic extract of seeds reduced the number of calcium oxalate deposits in ethylene glycol-induced lithiatic rats and decreased the urine concentration of calcium oxalate [33]. Thymoquinone, the major component of the seeds, showed preventive and therapeutic effects on ethylene glycol-induced kidney calculi in rats. This phytochemical compound decreased the size and number of calcium oxalate deposits in the renal tubules in rats. Khoei A., Hadjzadeh Z., Parizady M. Ethanolic extract of nigella sativa L seeds on ethylene glycol-induced kidney calculi in rats. Urol. J. 2009;4:86–90. [PubMed] [Google Scholar] Hajzadeh M., Mohammadian N., Rahmani Z., Rassouli F.B. Effect of thymoquinone on ethylene glycol-induced kidney calculi in rats. Urol. J. 2008;5:149–155. [PubMed] [Google Scholar]
Hibiscus sabdariffa / Roselle / Hibiscus
Based on Thai traditional medicine, Hibiscus sabdariffa is used for the prophylaxis and treatment of urinary stones [44]. It has been found that the main active constituents of this plant include polyphenols, hibiscus anthocyanins, as well as L-ascorbic acid, quercetin, and protocatechuic acid. The aqueous plant extract had demonstrated antiurolithiatic activity due to the decreased deposition of stone-forming constituents in the kidneys and serum of ethylene glycol-induced urolithiatic rats [36]. Moreover, the plant extract had an antilithic effect on rats on a glycolate diet through the decrease in oxalate retention time in the kidneys and more excretion into urine [80]. A clinical trial—which had tested a cup of tea made from 1.5 g of dry H. sabdariffa two times daily on 18 patients for 15 days—revealed uricosuric effect and significant increase in uric acid excretion and clearance. Prasongwatana V., Woottisin S., Sriboonlue P., Kukongviriyapan V. Uricosuric effect of Roselle (Hibiscus sabdariffa) in normal and renal-stone former subjects. J. Ethnopharmacol. 2008;117:491–495. doi: 10.1016/j.jep.2008.02.036. [DOI] [PubMed] [Google Scholar]
Origanum vulgare
This plant has been widely used as spice and in traditional medicine as a lithotriptic, diuretic, and antispasmodic [11]. The crude aqueous-methanolic extract of the aerial part of O. vulgare exhibited in vitro inhibitory activity in the nucleation and aggregation of calcium oxalate crystals, and also decreased the number of crystals produced in calcium oxalate metastable solutions. Evaluation of rats with ethylene glycol and ammonium chloride-induced urolithiasis showed that the extract of the aerial part of O. vulgare had antiurolithic activity, possibly through prevention of calcium oxalate crystallization, renal epithelial cell protection, antioxidant, and antispasmodic properties. The preventive effect could be attributed to its active phytochemicals including flavonoids, terpenes, coumains, saponins, alkaloids, sterol, and tannins . Khan A., Bashir S., Khan S.R., Gilani A.H. Antiurolithic activity of Origanum vulgare is mediated through multiple pathways. BMC Complement. Altern. Med. 2011;11:96. doi: 10.1186/1472-6882-11-96. [DOI] [PMC free article] [PubMed] [Google Scholar]
Medicinal Plants and Phytoconstituents as Dietary Supplements for the Prevention of Kidney Stones
In current years, there is great interest in herbal and traditional medicine for prevention and management of variety of diseases [81]. Medicinal plants have been used for thousands of years for the prevention of the development and recurrence of kidney stones in different countries [82,83]. Various medicinal plants and phytochemical constituents have been evaluated for their preventive and therapeutic potential in kidney stones [84]. Medicinal plants with well-established preclinical and/or clinical evidence of their protective or therapeutic effect in urolithiasis include Bergenia ciliata (Haw.) Sternb [85], Bergenia ligulata Engl. [86,87], Commiphora wightii (Arn.) Bhandari [88], Costus arabicus L. [89], Herniaria hirsuta L. [90], Terminalia chebula Retz. [91], Tribulus terrestris L. [92], Acalypha indica L. [93], Aerva lanata (L.) Juss. [94], Ageratum conyzoides (L.) L. [11], Alcea rosea L. [95], Asparagus racemosus Willd. [96], Bombax ceiba L. [97], Carthamus tinctorius L. [98], Cynodon dactylon (L.) Pers. [99], Helichrysum graveolens (M. Bieb.) Sweet and Helichrysum stoechas ssp. barellieri (Ten.) Nyman [100], Hordeum vulgare L. [101], Hygrophila spinosa T.Anderson [102], Hypericum perforatum L. [103], Launaea procumbens L. [104], Lygodium japonicum (Thunb.) Sw. [105], Orthosiphon grandiflorus Bold. [106], Paronychia argentea Lam. [107], Pedalium murex L. [9], Pergularia daemia (Forssk.) Chiov. [108], Quercus salicina Blume [109], Salvadora persica L. [110], Selaginella lepidophylla (Hook. et Grev) Spring [111], Agropyron repens (L.) P.Beauv. [112], and Phyllanthus niruri L. [113].
These nephro-protective herbs, were found to be effective inhibitors of the formation and growth of calcium hydrogen phosphate dihydrate (Brushite) crystals, calcium hydrogen phosphate dehydrate (CHPD) crystals, calcium oxalate monohydrate crystals, and cysteine and uric acid stones [85,86,87,101,104,114,115].
1.López M., Hoppe B. History, epidemiology and regional diversities of urolithiasis. Pediatr. Nephrol. 2010;25:49–59. doi: 10.1007/s00467-008-0960-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
2.Tiselius H.G. Epidemiology and medical management of stone disease. BJU Int. 2003;91:758–767. doi: 10.1046/j.1464-410X.2003.04208.x. [DOI] [PubMed] [Google Scholar]
3.Moe O.W. Kidney stones: Pathophysiology and medical management. Lancet. 2006;367:333–344. doi: 10.1016/S0140-6736(06)68071-9. [DOI] [PubMed] [Google Scholar]
4.Gindi S., Methra T., Chandu B.R., Boyina R., Dasari V. Antiurolithiatic and invitro anti-oxidant activity of leaves of Ageratum conyzoides in rat. World J. Pharm. Pharm. Sci. 2013;2:636–649. [Google Scholar]
5.Heron S., Yarnell E. Recurrent kidney stones: A naturopathic approach. Altern. Complement. Ther. 1998;4:60–67. doi: 10.1089/act.1998.4.60. [DOI] [Google Scholar]
6.Aggarwal A., Tandon S., Singla S., Tandon C. Diminution of oxalate induced renal tubular epithelial cell injury and inhibition of calcium oxalate crystallization in vitro by aqueous extract of Tribulus terrestris. Int. Braz. J. Urol. 2010;36:480–489. doi: 10.1590/S1677-55382010000400011. [DOI] [PubMed] [Google Scholar]
7.Baumann J.M. Stone preventionhy so little progress? Urol. Res. 1998;26:77–81. doi: 10.1007/s002400050027. [DOI] [PubMed] [Google Scholar]
8.Baynes R., Riviere J. Risks associated with melamine and related triazine contamination of food. Emerg. Health Threats J. 2010;3:e5. doi: 10.3402/ehtj.v3i0.7104. [DOI] [PMC free article] [PubMed] [Google Scholar]
9.Mandavia D.R., Patel M.K., Patel J.C., Anovadiya A.P., Baxi S.N., Tripathi C.R. Anti-urolithiatic effect of ethanolic extract of Pedalium murex linn. fruits on ethylene glycol-induced renal calculi. Urol. J. 2013;10:946–952. [PubMed] [Google Scholar]
10.Miller N.L., Lingeman J.E. Management of kidney stones. Br. Med. J. 2007;334:468. doi: 10.1136/bmj.39113.480185.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
11.Khan A., Bashir S., Khan S.R., Gilani A.H. Antiurolithic activity of Origanum vulgare is mediated through multiple pathways. BMC Complement. Altern. Med. 2011;11:96. doi: 10.1186/1472-6882-11-96. [DOI] [PMC free article] [PubMed] [Google Scholar]
12.Rathod N., Biswas D., Chitme H., Ratna S., Muchandi I., Chandra R. Anti-urolithiatic effects of Punica granatum in male rats. J. Ethnopharmacol. 2012;140:234–238. doi: 10.1016/j.jep.2012.01.003. [DOI] [PubMed] [Google Scholar]
13.Coe F.L., Parks J.H., Asplin J.R. The pathogenesis and treatment of kidney stones. N. Engl. J. Med. 1992;327:1141–1152. doi: 10.1056/NEJM199210153271607. [DOI] [PubMed] [Google Scholar]
14.Curhan G.C., Willett W.C., Knight E.L., Stampfer M.J. Dietary factors and the risk of incident kidney stones in younger women: Nurses’ Health Study II. Arch. Intern. Med. 2004;164:885–891. doi: 10.1001/archinte.164.8.885. [DOI] [PubMed] [Google Scholar]
15.Taylor E.N., Stampfer M.J., Curhan G.C. Dietary factors and the risk of incident kidney stones in men: New insights after 14 years of follow-up. J. Am. Soc. Nephrol. 2004;15:3225–3232. doi: 10.1097/01.ASN.0000146012.44570.20. [DOI] [PubMed] [Google Scholar]
16.Meschi T., Nouvenne A., Ticinesi A., Prati B., Guerra A., Allegri F., Pigna F., Soldati L., Vezzoli G., Gambaro G. Dietary habits in women with recurrent idiopathic calcium nephrolithiasis. J. Transl. Med. 2012;10:63. doi: 10.1186/1479-5876-10-63. [DOI] [PMC free article] [PubMed] [Google Scholar]
17.Goraya N., Wesson D.E. Dietary interventions to improve outcomes in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2015;24:505–510. doi: 10.1097/MNH.0000000000000160. [DOI] [PubMed] [Google Scholar]
18.Meschi T., Maggiore U., Fiaccadori E., Schianchi T., Bosi S., Adorni G., Ridolo E., Guerra A., Allegri F., Novarini A. The effect of fruits and vegetables on urinary stone risk factors. Kidney Int. 2004;66:2402–2410. doi: 10.1111/j.1523-1755.2004.66029.x. [DOI] [PubMed] [Google Scholar]
19.Kumar V., Sinha A.K., Makkar H.P., Becker K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 2010;120:945–959. doi: 10.1016/j.foodchem.2009.11.052. [DOI] [Google Scholar]
20.Seltzer M.A., Low R.K., McDonald M., Shami G.S., Stoller M.L. Dietary manipulation with lemonade to treat hypocitraturic calcium nephrolithiasis. J. Urol. 1996;156:907–909. doi: 10.1016/S0022-5347(01)65659-3. [DOI] [PubMed] [Google Scholar]
21.Sorensen M.D., Hsi R.S., Chi T., Shara N., Wactawski-Wende J., Kahn A.J., Wang H., Hou L., Stoller M.L. Dietary intake of fiber, fruit and vegetables decreases the risk of incident kidney stones in women Women’s Health Initiative report. J. Urol. 2014;192:1694–1699. doi: 10.1016/j.juro.2014.05.086. [DOI] [PMC free article] [PubMed] [Google Scholar]
22.Kim J.W., Choi J.S., Yoon G.S., Yang E.K., Kim D.Y. Effect of green tea on calcium oxalate stone formation and excretion in ethylene glycol-treated rats. Korean J. Urol. 2005;46:299–305. [Google Scholar]
23.Itoh Y., Yasui T., Okada A., Tozawa K., Hayashi Y., Kohri K. Preventive effects of green tea on renal stone formation and the role of oxidative stress in nephrolithiasis. J. Urol. 2005;173:271–275. doi: 10.1097/01.ju.0000141311.51003.87. [DOI] [PubMed] [Google Scholar]
24.Ghalayini I.F., Al-Ghazo M.A., Harfeil M.N. Prophylaxis and therapeutic effects of raspberry (Rubus idaeus) on renal stone formation in Balb/c mice. Int. Braz. J. Urol. 2011;37:259–267. doi: 10.1590/S1677-55382011000200013. [DOI] [PubMed] [Google Scholar]
25.Zhang Y., Zhang Z., Yang Y., Zu X., Guan D., Guan Y. Diuretic activity of Rubus idaeus L (Rosaceae) in rats. Trop. J. Pharm. Res. 2011;10 doi: 10.4314/tjpr.v10i3.15. [DOI] [Google Scholar]
26.Divakar K., Pawar A., Chandrasekhar S., Dighe S., Divakar G. Protective effect of the hydro-alcoholic extract of Rubia cordifolia roots against ethylene glycol induced urolithiasis in rats. Food Chem. Toxicol. 2010;48:1013–1018. doi: 10.1016/j.fct.2010.01.011. [DOI] [PubMed] [Google Scholar]
27.Al-Yousofy F., Gumaih H., Ibrahim H., Alasbahy A. Parsley! Mechanism as antiurolithiasis remedy. Am. J. Clin. Exp. Urol. 2017;5:55. [PMC free article] [PubMed] [Google Scholar]
28.Jafar S., Mehri L., Hadi B. The antiurolithiasic activity of aqueous extract of Petroselinum sativum on ethylene glycolinduced kidney calculi in rats; Proceedings of the International Conference on Chemical, Environmental and Biological Sciences; Pattaya, Thailand. 7–8 October 2011; pp. 1577–1583. [Google Scholar]
29.Saeidi J., Bozorgi H., Zendehdel A., Mehrzad J. Therapeutic effects of aqueous extracts of Petroselinum sativum on ethylene glycol-induced kidney calculi in rats. Urol. J. 2012;9:361–366. [PubMed] [Google Scholar]
30.Patel P., Patel M., Saralai M., Gandhi T. Antiurolithiatic effects of Solanum xanthocarpum fruit extract on ethylene-glycol-induced nephrolithiasis in rats. J. Young Pharm. 2012;4:164–170. doi: 10.4103/0975-1483.100022. [DOI] [PMC free article] [PubMed] [Google Scholar]
31.Zhang H., Li N., Li K., Li P. Protective effect of Urtica dioica methanol extract against experimentally induced urinary calculi in rats. Mol. Med. Rep. 2014;10:3157–3162. doi: 10.3892/mmr.2014.2610. [DOI] [PubMed] [Google Scholar]
32.Vanachayangkul P., Chow N., Khan S., Butterweck V. Prevention of renal crystal deposition by an extract of Ammi visnaga L. and its constituents khellin and visnagin in hyperoxaluric rats. Urol. Res. 2011;39:189–195. doi: 10.1007/s00240-010-0333-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
33.Khoei A., Hadjzadeh Z., Parizady M. Ethanolic extract of nigella sativa L seeds on ethylene glycol-induced kidney calculi in rats. Urol. J. 2009;4:86–90. [PubMed] [Google Scholar]
34.Hajzadeh M., Mohammadian N., Rahmani Z., Rassouli F.B. Effect of thymoquinone on ethylene glycol-induced kidney calculi in rats. Urol. J. 2008;5:149–155. [PubMed] [Google Scholar]
35.Li X., Liang Q., Sun Y., Diao L., Qin Z., Wang W., Lu J., Fu S., Ma B., Yue Z. Potential mechanisms responsible for the antinephrolithic effects of an aqueous extract of Fructus aurantii. Evid.-Based Complement. Altern. Med. 2015 doi: 10.1155/2015/491409. [DOI] [PMC free article] [PubMed] [Google Scholar]
36.Laikangbam R., Devi M.D. Inhibition of calcium oxalate crystal deposition on kidneys of urolithiatic rats by Hibiscus sabdariffa L. extract. Urol. Res. 2012;40:211–218. doi: 10.1007/s00240-011-0433-3. [DOI] [PubMed] [Google Scholar]
37.Meiouet F., El Kabbaj S., Daudon M. In vitro study of the litholytic effects of herbal extracts on cystine urinary calculi. Prog. Urol. 2011;21:40–47. doi: 10.1016/j.purol.2010.05.009. [DOI] [PubMed] [Google Scholar]
38.Cheraft-Bahloul N., Husson C., Ourtioualous M., Sinaeve S., Atmani D., Stévigny C., Nortier J.L., Antoine M.-H. Protective Effects of Pistacia lentiscus L. fruit extract against calcium oxalate monohydrate induced proximal tubular injury. J. Ethnopharmacol. 2017;209:248–254. doi: 10.1016/j.jep.2017.07.018. [DOI] [PubMed] [Google Scholar]
39.Saha S., Verma R.J. Evaluation of hydro-alcoholic extract of Dolichos biflorus seeds on inhibition of calcium oxalate crystallization. J. Herb. Med. 2015;5:41–47. doi: 10.1016/j.hermed.2014.11.001. [DOI] [Google Scholar]
40.Atodariya U., Barad R., Upadhyay S., Upadhyay U. Anti-urolithiatic activity of Dolichos biflorus seeds. J. Pharmacogn. Phytochem. 2013;2:45051. [Google Scholar]
41.Jeong B.C., Kim B.S., Kim J.I., Kim H.H. Effects of green tea on urinary stone formationn in vivo and in vitro study. J. Endourol. 2006;20:356–361. doi: 10.1089/end.2006.20.356. [DOI] [PubMed] [Google Scholar]
42.Tracy C.R., Henning J.R., Newton M.R., Aviram M., Zimmerman M.B. Oxidative stress and nephrolithiasis: A comparative pilot study evaluating the effect of pomegranate extract on stone risk factors and elevated oxidative stress levels of recurrent stone formers and controls. Urolithiasis. 2014;42:401–408. doi: 10.1007/s00240-014-0686-8. [DOI] [PubMed] [Google Scholar]
43.Singh R.G., Behura S.K., Kumar R. Litholytic property of Kulattha (Dolichous biflorus) vs. potassium citrate in renal calculus disease comparative study. JAPI. 2010;58:286–289. [PubMed] [Google Scholar]
44.Prasongwatana V., Woottisin S., Sriboonlue P., Kukongviriyapan V. Uricosuric effect of Roselle (Hibiscus sabdariffa) in normal and renal-stone former subjects. J. Ethnopharmacol. 2008;117:491–495. doi: 10.1016/j.jep.2008.02.036. [DOI] [PubMed] [Google Scholar]
45.Rodgers A., Mokoena M., Durbach I., Lazarus J., de Jager S., Ackermann H., Breytenbach I., Okada A., Usami M., Hirose Y. Do teas rich in antioxidants reduce the physicochemical and peroxidative risk factors for calcium oxalate nephrolithiasis in humans? Pilot studies with Rooibos herbal tea and Japanese green tea. Urolithiasis. 2016;44:299–310. doi: 10.1007/s00240-015-0855-4. [DOI] [PubMed] [Google Scholar]
46.Anttonen M.J., Karjalainen R.O. Environmental and genetic variation of phenolic compounds in red raspberry. J. Food Compos. Anal. 2005;18:759–769. doi: 10.1016/j.jfca.2004.11.003. [DOI] [Google Scholar]
47.Bhatt P., Kushwah A. Rubia cordifolia overview: A new approach to treat cardiac disorders. Int. J. Drug Dev. Res. 2013;5:47–54. [Google Scholar]
48.Deshkar N., Tilloo S., Pande V. A comprehensive review of Rubia cordifolia Linn. Pharmacogn. Rev. 2008;2:124–134. [Google Scholar]
49.Dev S. Selection of Prime Ayurvedic Plant Drugs. Anamaya Publishers; New Delhi, India: 2006. [Google Scholar]
50.Son J.K., Jung S.J., Jung J.H., Fang Z., Lee C.S., Seo C.S., Moon D.C., Min B.S., Kim M.R., Woo M.H. Anticancer Constituents from the Roots of Rubia cordifolia L. Chem. Pharm. Bull. 2008;56:213–216. doi: 10.1248/cpb.56.213. [DOI] [PubMed] [Google Scholar]
51.Lodi S., Sharma V., Kansal L. The protective effect of Rubia cordifolia against lead nitrate-induced immune response impairment and kidney oxidative damage. Indian J. Pharm. 2011;43:441–444. doi: 10.4103/0253-7613.83118. [DOI] [PMC free article] [PubMed] [Google Scholar]
52.Farzaei M.H., Abbasabadi Z., Ardekani M.R.S., Rahimi R., Farzaei F. Parsley: A review of ethnopharmacology, phytochemistry and biological activities. J. Tradit. Chin. Med. 2013;33:815–826. doi: 10.1016/S0254-6272(14)60018-2. [DOI] [PubMed] [Google Scholar]
53.Zhang H., Chen F., Wang X., Yao H.-Y. Evaluation of antioxidant activity of parsley (Petroselinum crispum) essential oil and identification of its antioxidant constituents. Food Res. Int. 2006;39:833–839. doi: 10.1016/j.foodres.2006.03.007. [DOI] [Google Scholar]
54.Moazedi A., Mirzaie D., Seyyednejad S., Zadkarami M., Amirzargar A. Spasmolytic effect of Petroselinum crispum (Parsley) on rat’s ileum at different calcium chloride concentrations. Pak. J. Biol. Sci. 2007;10:4036–4042. doi: 10.3923/pjbs.2007.4036.4042. [DOI] [PubMed] [Google Scholar]
55.Rezazad M., Farokhi F. Protective effect of Petroselinum crispum extract in abortion using prostadin-induced renal dysfunction in female rats. Avicenna J. Phytomed. 2014;4:312–319. [PMC free article] [PubMed] [Google Scholar]
56.Kreydiyyeh S.I., Usta J. Diuretic effect and mechanism of action of parsley. J. Ethnopharmacol. 2002;79:353–357. doi: 10.1016/S0378-8741(01)00408-1. [DOI] [PubMed] [Google Scholar]
57.Vamenta-Morris H., Dreisbach A., Shoemaker-Moyle M., Abdel-Rahman E.M. Internet claims on dietary and herbal supplements in advanced nephropathyruth or myth. Am. J. Nephrol. 2014;40:393–398. doi: 10.1159/000368724. [DOI] [PubMed] [Google Scholar]
58.Kuźma P., Drużyńska B., Obiedziński M. Optimization of extraction conditions of some polyphenolic compounds from parsley leaves (Petroselinum crispum) Acta Sci. Pol. Technol. Aliment. 2014;13:145–154. doi: 10.17306/J.AFS.2014.2.4. [DOI] [PubMed] [Google Scholar]
59.Jurenka J. Therapeutic applications of pomegranate (Punica granatum L.): A review. Altern. Med. Rev. 2008;13:128–144. [PubMed] [Google Scholar]
60.Bhandari P.R. Pomegranate (Punica granatum L). Ancient seeds for modern cure? Review of potential therapeutic applications. Int. J. Nutr. Pharmacol. Neurol. Dis. 2012;2:171–184. doi: 10.4103/2231-0738.99469. [DOI] [Google Scholar]
61.Tugcu V., Kemahli E., Ozbek E., Arinci Y.V., Uhri M., Erturkuner P., Metin G., Seckin I., Karaca C., Ipekoglu N. Protective effect of a potent antioxidant, pomegranate juice, in the kidney of rats with nephrolithiasis induced by ethylene glycol. J. Endourol. 2008;22:2723–2732. doi: 10.1089/end.2008.0357. [DOI] [PubMed] [Google Scholar]
62.Elwej A., Ghorbel I., Marrekchi R., Boudawara O., Jamoussi K., Boudawara T., Zeghal N., Sefi M. Improvement of kidney redox states contributes to the beneficial effects of dietary pomegranate peel against barium chloride-induced nephrotoxicity in adult rats. Arch. Physiol. Biochem. 2016;122:130–140. doi: 10.3109/13813455.2016.1150298. [DOI] [PubMed] [Google Scholar]
63.Boroushaki M.T., Asadpour E., Sadeghnia H.R., Dolati K. Effect of pomegranate seed oil against gentamicin-induced nephrotoxicity in rat. J. Food Sci. Technol. 2014;51:3510–3514. doi: 10.1007/s13197-012-0881-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
64.Alimoradian A., Changizi-Ashtiyani S., Ghiasabadi Farahani A., Kheder L., Rajabi R., Sharifi A. Protective Effects of Pomegranate Juice on Nephrotoxicity Induced by Captopril and Gentamicin in Rats. Iran. J. Kidney Dis. 2017;11:422–429. [PubMed] [Google Scholar]
65.Sadeghi F., Nematbakhsh M., Noori-Diziche A., Eshraghi-Jazi F., Talebi A., Nasri H., Mansouri A., Dehghani A., Saberi S., Shirdavani S., et al. Protective effect of pomegranate flower extract against gentamicin-induced renal toxicity in male rats. J. Ren. Inj. Prev. 2015;4:45–50. doi: 10.12861/jrip.2015.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
66.Primarizky H., Yuniarti W.M., Lukiswanto B.S. Benefits of pomegranate (Punica granatum Linn) fruit extracts to weight changes, total protein, and uric acid in white rats (Rattus norvegicus) as an animal model of acute renal failure. Vet. World. 2016;9:1269–1274. doi: 10.14202/vetworld.2016.1269-1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
67.Sharifiyan F., Movahedian-Attar A., Nili N., Asgary S. Study of pomegranate (Punica granatum L.) peel extract containing anthocyanins on fatty streak formation in the renal arteries in hypercholesterolemic rabbits. Adv. Biomed. Res. 2016;5:8. doi: 10.4103/2277-9175.175241. [DOI] [PMC free article] [PubMed] [Google Scholar]
68.Bagri P., Ali M., Aeri V., Bhowmik M., Sultana S. Antidiabetic effect of Punica granatum flowers: Effect on hyperlipidemia, pancreatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes. Food Chem. Toxicol. 2009;47:50–54. doi: 10.1016/j.fct.2008.09.058. [DOI] [PubMed] [Google Scholar]
69.Ilbey Y.O., Ozbek E., Simsek A., Cekmen M., Somay A., Tasci A.I. Effects of pomegranate juice on hyperoxaluria-induced oxidative stress in the rat kidneys. Ren. Fail. 2009;31:522–531. doi: 10.1080/08860220902963871. [DOI] [PubMed] [Google Scholar]
70.Ljubuncic P., Song H., Cogan U., Azaizeh H., Bomzon A. The effects of aqueous extracts prepared from the leaves of Pistacia lentiscus in experimental liver disease. J. Ethnopharmacol. 2005;100:198–204. doi: 10.1016/j.jep.2005.03.006. [DOI] [PubMed] [Google Scholar]
71.Benhammou N., Bekkara F.A., Panovska T.K. Antioxidant and antimicrobial activities of the Pistacia lentiscus and Pistacia atlantica extracts. Afr. J. Pharm. Pharmacol. 2008;2:22–28. [Google Scholar]
72.Kumar S., Pandey A.K. Medicinal attributes of Solanum xanthocarpum fruit consumed by several tribal communities as foodn in vitro antioxidant, anticancer and anti HIV perspective. BMC Complement. Altern. Med. 2014;14:112. doi: 10.1186/1472-6882-14-112. [DOI] [PMC free article] [PubMed] [Google Scholar]
73.Saha S., Goswami G., Pandrangi A. Isolation and prevention of calcium oxalate-induced apoptotic death and oxidative stress in MDCK cells by diosgenin. Chem. Biol. Interact. 2014;224:51–57. doi: 10.1016/j.cbi.2014.09.016. [DOI] [PubMed] [Google Scholar]
74.Ranka D., Aswar M., Aswar U., Bodhankar S. Diuretic potential of aqueous extract of roots of Solanum xanthocarpum Schrad & Wendl, a preliminary study. Indian J. Exp. Biol. 2013;51:833–839. [PubMed] [Google Scholar]
75.Hussain T., Gupta R.K., Sweety K., Eswaran B., Vijayakumar M., Rao C.V. Nephroprotective activity of Solanum xanthocarpum fruit extract against gentamicin–induced nephrotoxicity and renal dysfunction in experimental rodents. Asian Pac. J. Trop. Med. 2012;5:686–691. doi: 10.1016/S1995-7645(12)60107-2. [DOI] [PubMed] [Google Scholar]
76.Durak I., Biri H., Devrim E., Sözen S., Avcı A. Aqueous extract of Urtica dioica makes significant inhibition on adenosine deaminase activity in prostate tissue from patients with prostate cancer. Cancer Biol. Ther. 2004;3:855–857. doi: 10.4161/cbt.3.9.1038. [DOI] [PubMed] [Google Scholar]
77.Mathew L.E., Sindhu G., Helen A. Dolichos biflorus exhibits anti-inflammatory and antioxidant properties in an acute inflammatory model. J. Food Drug Anal. 2014;22:455–462. doi: 10.1016/j.jfda.2014.02.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
78.Hayatdavoudi P., Rad A.K., Rajaei Z., Hadjzadeh M.A.-R. Renal injury, nephrolithiasis and Nigella sativa: A mini review. Avicenna J. Phytomed. 2016;6:1–8. [PMC free article] [PubMed] [Google Scholar]
79.Amin G.R. Popular Medicinal Plants of Iran. Volume 1 Iranian Research Institute of Medicinal Plants Tehran; Tehran, Iran: 1991. [Google Scholar]
80.Woottisin S., Hossain R.Z., Yachantha C., Sriboonlue P., Ogawa Y., Saito S. Effects of Orthosiphon grandiflorus, Hibiscus sabdariffa and Phyllanthus amarus extracts on risk factors for urinary calcium oxalate stones in rats. J. Urol. 2011;185:323–328. doi: 10.1016/j.juro.2010.09.003. [DOI] [PubMed] [Google Scholar]
81.Farzaei M.H., Abdollahi M., Rahimi R. Role of dietary polyphenols in the management of peptic ulcer. World J. Gastroenterol. 2015;21:6499. doi: 10.3748/wjg.v21.i21.6499. [DOI] [PMC free article] [PubMed] [Google Scholar]
82.Gürocak S., Küpeli B. Consumption of historical and current phytotherapeutic agents for urolithiasis: A critical review. J. Urol. 2006;176:450–455. doi: 10.1016/j.juro.2006.03.034. [DOI] [PubMed] [Google Scholar]
83.Alok S., Jain S.K., Verma A., Kumar M., Sabharwal M. Pathophysiology of kidney, gallbladder and urinary stones treatment with herbal and allopathic medicine: A review. Asian Pac. J. Trop. Dis. 2013;3:496–504. doi: 10.1016/S2222-1808(13)60107-3. [DOI] [Google Scholar]
84.Lien E.J.-C., Lien L.L.-M., Wang R., Wang J. Phytochemical analysis of medicinal plants with kidney protective activities. Chin. J. Integr. Med. 2012;18:790–800. doi: 10.1007/s11655-011-0713-3. [DOI] [PubMed] [Google Scholar]
85.Saha S., Verma R.J. Inhibition of calcium oxalate crystallisation in vitro by an extract of Bergenia ciliata. Arab J. Urol. 2013;11:187–192. doi: 10.1016/j.aju.2013.04.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
86.Bashir S., Gilani A.H. Antiurolithic effect of Bergenia ligulata rhizome: An explanation of the underlying mechanisms. J. Ethnopharmacol. 2009;122:106–116. doi: 10.1016/j.jep.2008.12.004. [DOI] [PubMed] [Google Scholar]
87.Aggarwal D., Kaushal R., Kaur T., Bijarnia R.K., Puri S., Singla S.K. The most potent antilithiatic agent ameliorating renal dysfunction and oxidative stress from Bergenia ligulata rhizome. J. Ethnopharmacol. 2014;158:85–93. doi: 10.1016/j.jep.2014.10.013. [DOI] [PubMed] [Google Scholar]
88.Chauhan C., Joshi M., Vaidya A. Growth inhibition of struvite crystals in the presence of herbal extract Commiphora wightii. J. Mater. Sci. Mater. Med. 2009;20:85. doi: 10.1007/s10856-008-3489-z. [DOI] [PubMed] [Google Scholar]
89.De Cógáin M.R., Linnes M.P., Lee H.J., Krambeck A.E., de Mendonça Uchôa J.C., Kim S.-H., Lieske J.C. Aqueous extract of Costus arabicus inhibits calcium oxalate crystal growth and adhesion to renal epithelial cells. Urolithiasis. 2015;43:119–124. doi: 10.1007/s00240-015-0749-5. [DOI] [PubMed] [Google Scholar]
90.Atmani F., Slimani Y., Mbark A., Bnouham M., Ramdani A. In vitro and in vivo antilithiasic effect of saponin rich fraction isolated from Herniaria hirsute. J. Bras. Nefrol. 2006;28:199–203. [Google Scholar]
91.Tayal S., Duggal S., Bandyopadhyay P., Aggarwal A., Tandon S., Tandon C. Cytoprotective role of the aqueous extract of Terminalia chebula on renal epithelial cells. Int. Braz. J. Urol. 2012;38:204–214. doi: 10.1590/S1677-55382012000200008. [DOI] [PubMed] [Google Scholar]
92.Aggarwal A., Tandon S., Kumar Singla S., Tandon C. A novel antilithiatic protein from Tribulus terrestris having cytoprotective potency. Protein Pept. Lett. 2012;19:812–819. doi: 10.2174/092986612801619552. [DOI] [PubMed] [Google Scholar]
93.Sathya M., Kokilavani R., Teepa K.A., Balakrishnan A. Biopotency of Acalypha indica Linn on Membrane Bound ATPases and Marker Enzymes urolithic Rats. Anc. Sci. Life. 2011;31:3–9. [PMC free article] [PubMed] [Google Scholar]
94.Soundararajan P., Mahesh R., Ramesh T., Begum V.H. Effect of Aerva lanata on calcium oxalate urolithiasis in rats. Indian J. Exp. Biol. 2006;44:981–986. [PubMed] [Google Scholar]
95.Ahmadi M., Rad A.K., Rajaei Z., Hadjzadeh M.-A.-R., Mohammadian N., Tabasi N.S. Alcea rosea root extract as a preventive and curative agent in ethylene glycol-induced urolithiasis in rats. Indian J. Pharmacol. 2012;44:304–307. doi: 10.4103/0253-7613.96298. [DOI] [PMC free article] [PubMed] [Google Scholar]
96.Christina A., Ashok K., Packialakshmi M., Tobin G., Preethi J., Murugesh N. Antilithiatic effect of Asparagus racemosus Willd on ethylene glycol-induced lithiasis in male albino Wistar rats. Methods Find. Exp. Clin. Pharmacol. 2005;27:633–638. doi: 10.1358/mf.2005.27.9.939338. [DOI] [PubMed] [Google Scholar]
97.Gadge N., Jalalpure S. Curative treatment with extracts of Bombax ceiba fruit reduces risk of calcium oxalate urolithiasis in rats. Pharm. Biol. 2012;50:310–317. doi: 10.3109/13880209.2011.604332. [DOI] [PubMed] [Google Scholar]
98.Lin W.-C., Lai M.-T., Chen H.-Y., Ho C.-Y., Man K.-M., Shen J.-L., Lee Y.-J., Tsai F.-J., Chen Y.-H., Chen W.-C. Protective effect of Flos carthami extract against ethylene glycol-induced urolithiasis in rats. Urol. Res. 2012;40:655–661. doi: 10.1007/s00240-012-0472-4. [DOI] [PubMed] [Google Scholar]
99.Rad A.K., Rajaei Z., Mohammadian N., Valiollahi S., Sonei M. The Beneficial effect of Cynodon Dactylon fractions on ethylene glycol-induced kidney calculi in rats. Urol. J. 2011;8:179–184. [PubMed] [Google Scholar]
100.Orhan N., Onaran M., Şen İ., Gönül İ.I., Aslan M. Preventive treatment of calcium oxalate crystal deposition with immortal flowers. J. Ethnopharmacol. 2015;163:60–67. doi: 10.1016/j.jep.2015.01.009. [DOI] [PubMed] [Google Scholar]
101.Shah J.G., Patel B.G., Patel S.B., Patel R.K. Antiurolithiatic and antioxidant activity of Hordeum vulgare seeds on ethylene glycol-induced urolithiasis in rats. Indian J. Pharmacol. 2012;44:672–677. doi: 10.4103/0253-7613.103237. [DOI] [PMC free article] [PubMed] [Google Scholar]
102.Ingale K.G., Thakurdesai P.A., Vyawahare N.S. Effect of Hygrophila spinosa in ethylene glycol induced nephrolithiasis in rats. Indian J. Pharmacol. 2012;44:639–642. doi: 10.4103/0253-7613.100402. [DOI] [PMC free article] [PubMed] [Google Scholar]
103.Khalili M., Jalali M.R., Mirzaei-Azandaryani M. Effect of hydroalcoholic extract of Hypericum perforatum L. leaves on ethylene glycol-induced kidney calculi in rats. Urol. J. 2012;9:472–479. [PubMed] [Google Scholar]
104.Makasana A., Ranpariya V., Desai D., Mendpara J., Parekh V. Evaluation for the anti-urolithiatic activity of Launaea procumbens against ethylene glycol-induced renal calculi in rats. Toxicol. Rep. 2014;1:46–52. doi: 10.1016/j.toxrep.2014.03.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
105.Cho H.J., Bae W.J., Kim S.J., Hong S.H., Lee J.Y., Hwang T.-K., Choi Y.J., Hwang S.Y., Kim S.W. The inhibitory effect of an ethanol extract of the spores of Lygodium japonicum on ethylene glycol-induced kidney calculi in rats. Urolithiasis. 2014;42:309–315. doi: 10.1007/s00240-014-0674-z. [DOI] [PubMed] [Google Scholar]
106.Akanae W., Tsujihata M., Yoshioka I., Nonomura N., Okuyama A. Orthosiphon grandiflorum has a protective effect in a calcium oxalate stone forming rat model. Urol. Res. 2010;38:89–96. doi: 10.1007/s00240-010-0265-6. [DOI] [PubMed] [Google Scholar]
107.Bouanani S., Henchiri C., Migianu-Griffoni E., Aouf N., Lecouvey M. Pharmacological and toxicological effects of Paronychia argentea in experimental calcium oxalate nephrolithiasis in rats. J. Ethnopharmacol. 2010;129:38–45. doi: 10.1016/j.jep.2010.01.056. [DOI] [PubMed] [Google Scholar]
108.Vyas B., Vyas R., Joshi S., Santani D. Antiurolithiatic activity of whole-plant hydroalcoholic extract of Pergularia daemia in rats. J. Young Pharm. 2011;3:36–40. doi: 10.4103/0975-1483.76417. [DOI] [PMC free article] [PubMed] [Google Scholar]
109.Moriyama M.T., Suga K., Miyazawa K., Tanaka T., Higashioka M., Noda K., Oka M., Tanaka M., Suzuki K. Inhibitions of urinary oxidative stress and renal calcium level by an extract of Quercus salicina Blume/Quercus stenophylla Makino in a rat calcium oxalate urolithiasis model. Int. J. Urol. 2009;16:397–401. doi: 10.1111/j.1442-2042.2009.02268.x. [DOI] [PubMed] [Google Scholar]
110.Geetha K., Manavalan R., Venkappayya D. Control of urinary risk factors of stone formation by Salvadora persica in experimental hyperoxaluria. Methods Find. Exp. Clin. Pharmacol. 2010;32:623–629. doi: 10.1358/mf.2010.32.9.1549114. [DOI] [PubMed] [Google Scholar]
111.Mirian E.-C.M., Juanita N.-M., Christophe B.O., Estela M.-C.M. Molecular mechanisms involved in the protective effect of the chloroform extract of Selaginella lepidophylla (Hook. et Grev.) Spring in a lithiasic rat model. Urolithiasis. 2013;41:205–215. doi: 10.1007/s00240-013-0556-9. [DOI] [PubMed] [Google Scholar]
112.Brardi S., Imperiali P., Cevenini G., Verdacchi T., Ponchietti R. Effects of the association of potassium citrate and agropyrum repens in renal stone treatment: Results of a prospective randomized comparison with potassium citrate. Arch. Ital. Urol. Androl. 2012;84:61–67. [PubMed] [Google Scholar]
113.Micali S., Sighinolfi M., Celia A., de Stefani S., Grande M., Cicero A., Bianchi G. Can Phyllanthus niruri affect the efficacy of extracorporeal shock wave lithotripsy for renal stones? A randomized, prospective, long-term study. J. Urol. 2006;176:1020–1022. doi: 10.1016/j.juro.2006.04.010. [DOI] [PubMed] [Google Scholar]
114.Joshi V.S., Parekh B.B., Joshi M.J., Vaidya A.D. Inhibition of the growth of urinary calcium hydrogen phosphate dihydrate crystals with aqueous extracts of Tribulus terrestris and Bergenia ligulata. Urol. Res. 2005;33:80–86. doi: 10.1007/s00240-004-0450-6. [DOI] [PubMed] [Google Scholar]
115.Byahatti V.V., Pai K.V., D’Souza M.G. Effect of phenolic compounds from Bergenia ciliata (Haw.) Sternb. leaves on experimental kidney stones. Anc. Sci. Life. 2010;30:14–17. [PMC free article] [PubMed] [Google Scholar]
116.Han X., Shen T., Lou H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 2007;8:950–988. doi: 10.3390/i8090950. [DOI] [Google Scholar]
117.Mendoza-Wilson A.M., Glossman-Mitnik D. Theoretical study of the molecular properties and chemical reactivity of (+)-catechin and (−)-epicatechin related to their antioxidant ability. J. Mol. Struct. THEOCHEM. 2006;761:97–106. doi: 10.1016/j.theochem.2006.01.001. [DOI] [Google Scholar]
118.Higdon J.V., Frei B. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr. 2003;43:89–143. doi: 10.1080/10408690390826464. [DOI] [PubMed] [Google Scholar]
119.Amengual-Cladera E., Nadal-Casellas A., Gómez-Pérez Y., Gomila I., Prieto R.M., Proenza A.M., Lladó I. Phytotherapy in a rat model of hyperoxaluriahe antioxidant effects of quercetin involve serum paraoxonase 1 activation. Exp. Biol. Med. 2011;236:1133–1138. doi: 10.1258/ebm.2011.011090. [DOI] [PubMed] [Google Scholar]
120.Khan S.A., Priyamvada S., Farooq N., Khan S., Khan M.W., Yusufi A.N. Protective effect of green tea extract on gentamicin-induced nephrotoxicity and oxidative damage in rat kidney. Pharmacol. Res. 2009;59:254–262. doi: 10.1016/j.phrs.2008.12.009. [DOI] [PubMed] [Google Scholar]
121.Zhai W., Zheng J., Yao X., Peng B., Liu M., Huang J., Wang G., Xu Y. Catechin prevents the calcium oxalate monohydrate induced renal calcium crystallization in NRK-52E cells and the ethylene glycol induced renal stone formation in rat. BMC Complement. Altern. Med. 2013;13:228. doi: 10.1186/1472-6882-13-228. [DOI] [PMC free article] [PubMed] [Google Scholar]
122.Grases F., Prieto R.M., Fernandez-Cabot R.A., Costa-Bauzá A., Tur F., Torres J.J. Effects of polyphenols from grape seeds on renal lithiasis. Oxid. Med. Cell. Longev. 2015;2015:813737. doi: 10.1155/2015/813737. [DOI] [PMC free article] [PubMed] [Google Scholar]
123.Kanlaya R., Singhto N., Thongboonkerd V. EGCG decreases binding of calcium oxalate monohydrate crystals onto renal tubular cells via decreased surface expression of alpha-enolase. J. Biol. Inorg. Chem. 2016;21:339–346. doi: 10.1007/s00775-016-1344-0. [DOI] [PubMed] [Google Scholar]
124.Crespo M., Galvez J., Cruz T., Ocete M., Zarzuelo A. Anti-inflammatory activity of diosmin and hesperidin in rat colitis induced by TNBS. Planta Med. 1999;65:651–653. doi: 10.1055/s-2006-960838. [DOI] [PubMed] [Google Scholar]
125.Abdel-Daim M.M., Khalifa H.A., Abushouk A.I., Dkhil M.A., Al-Quraishy S.A. Diosmin Attenuates Methotrexate-Induced Hepatic, Renal, and Cardiac Injury: A Biochemical and Histopathological Study in Mice. Oxid. Med. Cell. Longev. 2017;2017:3281670. doi: 10.1155/2017/3281670. [DOI] [PMC free article] [PubMed] [Google Scholar]
126.Ahmed S., Mundhe N., Borgohain M., Chowdhury L., Kwatra M., Bolshette N., Ahmed A., Lahkar M. Diosmin Modulates the NF-κB Signal Transduction Pathways and Downregulation of Various Oxidative Stress Markers in Alloxan-Induced Diabetic Nephropathy. Inflammation. 2016;39:1783–1797. doi: 10.1007/s10753-016-0413-4. [DOI] [PubMed] [Google Scholar]
127.Rehman M.U., Tahir M., Quaiyoom Khan A., Khan R., Lateef A., Hamiza O.O., Ali F., Sultana S. Diosmin protects against trichloroethylene-induced renal injury in Wistar ratslausible role of p53, Bax and caspases. Br. J. Nutr. 2013;110:699–710. doi: 10.1017/S0007114512005752. [DOI] [PubMed] [Google Scholar]
128.Schlottfeldt Fdos S., Fernandes S.M., Martins D.M., Cordeiro P., Fonseca C.D., Watanabe M., Vattimo Mde F. Prevention of amphotericin B nephrotoxicity through use of phytotherapeutic medication. Rev. Esc. Enferm. USP. 2015;49:74–79. doi: 10.1590/S0080-623420150000700011. [DOI] [PubMed] [Google Scholar]
129.Noorafshan A., Karbalay-Doust S., Karimi F. Diosmin reduces calcium oxalate deposition and tissue degeneration in nephrolithiasis in rats: A stereological study. Korean J. Urol. 2013;54:252–257. doi: 10.4111/kju.2013.54.4.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
130.Prabhu V.V., Sathyamurthy D., Ramasamy A., Das S., Anuradha M., Pachiappan S. Evaluation of protective effects of diosmin (a citrus flavonoid) in chemical-induced urolithiasis in experimental rats. Pharm. Biol. 2016;54:1513–1521. doi: 10.3109/13880209.2015.1107105. [DOI] [PubMed] [Google Scholar]
131.Pastukhov A.V., Levchenko L.A., Sadkov A.P. Spectroscopic study on binding of rutin to human serum albumin. J. Mol. Struct. 2007;842:60–66. doi: 10.1016/j.molstruc.2006.12.008. [DOI] [Google Scholar]
132.Colombo R., de L Batista A.N., Teles H.L., Silva G.H., Bomfim G.C., Burgos R.C., Cavalheiro A.J., da Silva Bolzani V., Silva D.H., Pelicia C.R., et al. Validated HPLC method for the standardization of Phyllanthus niruri (herb and commercial extracts) using corilagin as a phytochemical marker. Biomed. Chromatogr. BMC. 2009;23:573–580. doi: 10.1002/bmc.1155. [DOI] [PubMed] [Google Scholar]
133.Ghodasara J., Pawar A., Deshmukh C., Kuchekar B. Inhibitory effect of rutin and curcumin on experimentally-induced calcium oxalate urolithiasis in rats. Pharmacogn. Res. 2010;2:388–392. doi: 10.4103/0974-8490.75462. [DOI] [PMC free article] [PubMed] [Google Scholar]
134.Zhu W., Xu Y.F., Feng Y., Peng B., Che J.P., Liu M., Zheng J.H. Prophylactic effects of quercetin and hyperoside in a calcium oxalate stone forming rat model. Urolithiasis. 2014;42:519–526. doi: 10.1007/s00240-014-0695-7. [DOI] [PubMed] [Google Scholar]
135.Park H.K., Jeong B.C., Sung M.-K., Park M.-Y., Choi E.Y., Kim B.S., Kim H.H., Kim J.I. Reduction of oxidative stress in cultured renal tubular cells and preventive effects on renal stone formation by the bioflavonoid quercetin. J. Urol. 2008;179:1620–1626. doi: 10.1016/j.juro.2007.11.039. [DOI] [PubMed] [Google Scholar]
136.Mutalib L.Y. Comparison between phytotherapy and conventional drug therapy used in urolithiasis management in Hawler city, Kurdistan Region\Iraq. J. Pharmacogn. Phytochem. 2015;4:83–86. [Google Scholar]