Fytotherapie‎ > ‎

Diabetes

Suikerziekte

Stoornis in koolhydraat- en vetstofwisseling veroorzaakt door een tekort aan insuline in de bloedvaten en de cellen.

Oorzaken
Pancreasfunctie, aanmaak van insuline in de eilandjes van Langerhans is verstoord, maar de oorzaak daarvan is onduidelijk.
erfelijke factoren spelen een rol
vetzucht bevordert de ziekte
ouderdom, slijtage van de pancreas?

Soorten
Type I: juveniele diabetes, bij jongeren, de ß-cellen in de eilandjes van Langerhans functioneren niet goed.
Type II: ouderdomsdiabetes, de meest voorkomende, gaat dikwijls samen met vetzucht. Cellen zijn minder gevoelig voor insuline, insuline wordt slecht gebruikt door het lichaam.

Kruiden, een alfabetisch overzicht
  • Allium cepa / Ui : ook schil met hoog quercetinegehalte gebruiken bvb als soep
  • Allium sativum / Knoflook
  • Arctium lappa / Grote klis*: inuline
  • Atriplex halimus / Saltbush (Maluah): zoutsmakende plant uit Negev-woestijn Israel
  • Cinnamomum / Kaneel
  • Cyamopsis tetragonoloba / Guargom: slijmstoffen
  • Cynara scolymus / Artisjok
  • Eucalyptus globulus / Eucalyptus: blad als thee, niet de etherische olie
  • Eleutherococcus senticosus / Siberische ginseng: adaptogeen
  • Galega officinalis / Galega: obsoleet
  • Geranium robertianum / Robertskruid
  • Gymnema sylvestris: tropische plant uit de wouden van India
  • Helianthus tuberosus / Aardpeer: inuline
  • Juglans regia / Walnootboom
  • Momordica charantia / Bitter melon (Karela): tropische groente, sap, extract onrijpe vrucht
  • Opuntia / Nopal of Vijgcactus: vruchten als voedsel
  • Panax ginseng / Koreaanse ginseng*: adaptogeen
  • Phaseolus vulgaris / Spercieboon
  • Polygonum aviculare / Varkensgras
  • Pterocarpus marsupium (India): flavonoïd epicatechine in schors beschermt beta-cellen
  • Stevia rebaudiana: zoetstofplant, vervanger suiker
  • Tarraxacum officinale / Paardebloem
  • Trigonella foenum-graecum / Fenegriek*: zaad
  • Vaccinium myrtillus / Blauwe bosbes

De bekendste plantenstoffen met bloedsuikerverlagende werking zijn:
glucoquininen met insuline-achtige werking o.a. in Allium cepa.
inuline en andere FOS, fructo-oligosacchariden o.a. in grote klis, aardpeer, schorseneren.
vezelstoffen / slijmstoffen o.a. in guargom, fenegriek, heemst

Aanvullende planten
vooral bedoeld om cardiovasculaire complicaties tegen te gaan, dus vooral de kruiden voor hart en bloedvaten o.a. knoflook en vooral Ginkgo biloba en andere flavonoïdplanten.

Voedingssupplementen / Oligo

chroom*: in GTF (glucose tolerantie factor), in biergist
mangaan: co-factor in glucosestofwisseling, diabetici hebben gemiddeld een lagere mangaanspiegel.
zink*: beschermend effect op ß-cellen
voedingsvezels: volkoren en fruit of groenten

Voeding en leefstijl
minder enkelvoudige suikers, minder dierlijke vetten en calorieën
meer volkoren graanproducten, meer vis, meerdere keren kleinere hoeveelheden eten.
peulvruchten (soep) en noten, ook aardnoten?
meer bewegen, vooral stevige, niet-uitputtende wandelingen 3x per week 1 uur: verbetert de efficiëntie van insuline, vermindert totaalcholesterol, verhoogt HDL.

Literatuur
Auswirkungen eines modifizierten Guar-Gummi-Praparates auf den Glukose- und Lipidspiegel bei Diabetikern und gesunden Freiwilligen. Atherosclerosis 45 (1982).
Bourret J.C. - Les nouveaux succes de la medecine par les plantes. Le diabete.
Faulds - Eucalyptus in treatment of diabetes. The Glasgow Med. J. 1920.
Huibers J. - Suikerziekte (Anckertje 57)
Lau S. - Insuline slikken in plaats van prikken? Ned. Tdschr. Phytoth. 3 (1994)
Leclerc H. - La phytothérapie hypoglycémiante. Progres med. 1935
Leclerc H. - Une plante hypoglycemiante: le Galega. Rev. de Phytoth. 1947.
Mada Z. e.a. - Glucose-lowering effect of fenugreek in non-insulin dependent diabetics. Eur. J. Clin. Nutr. 42 (1988)
Murray M. - Diabetes and Hypoglycemia (1994)
Natural Products used for Diabetes. Shapiro en Gong. J. American Pharm. Ass. 2002.
Pedersen O. e.a. - Increasing insulin receptors after exercise in patients with insulin-dependent diabetes. N. Engl. J. Med. 302 (1980)
Phytopharmaka als Antidiabetika. Prof.Ammon in Ztschr. f. Phytoth. 15 (1994)
Piotrowski - Action hypoglycemiante de l’ extrait de Bardane. Soc.de therap. 1935.
Planten als anti-diabetica: droom en werkelijkheid. Gert Laekeman. Ned. Ver. Geneeskr.
Sharma K.K. e.a. - Antihyperglycemic effect of onion: Effect on fasting blood sugar and induced hyperglycemia in man. Ind. J. Med. Res. 65 (1977)
Voeding en diabetes. Doc. en Inf. Centrum Tiense Suikerraffinaderij.
Weiss R. - Herbal Medicine (1979)
Welihinda e.a. - Effect of Momordica ch. on the glucose tolerance in maturity onset diabetes. J. Ethnopharmacol. 17 (1986)
Yamashita K. e.a. - Effects of fructo-oligosacchariden on blood glucose and serumlipides in diabetic subjects. Nutr. Res. 4 (1984).
Review meer dan 400 wetenschappelijke onderzoeken met planten

©Herboristen Opleiding ‘Dodonaeus’ / Maurice Godefridi



Systematic review of herbs and dietary supplements for glycemic control in diabetes.

Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS.Diabetes Care. 2003 Apr;26(4):1277-94.
Division for Research and Education in Complementary and Integrative Medical Therapies, Harvard Medical School, Boston, Massachusetts, USA. gyeh@caregroup.harvard.edu

OBJECTIVE: To conduct a systematic review of the published literature on the efficacy and safety of herbal therapies and vitamin/mineral supplements for glucose control in patients with diabetes. RESEARCH DESIGN AND METHODS: We conducted an electronic literature search of MEDLINE, OLDMEDLINE, Cochrane Library Database, and HealthSTAR, from database inception to May 2002, in addition to performing hand searches and consulting with experts in the field. Available clinical studies published in the English language that used human participants and examined glycemic control were included. Data were extracted in a standardized manner, and two independent investigators assessed methodological quality of randomized controlled trials using the Jadad scale.

RESULTS: A total of 108 trials examining 36 herbs (single or in combination) and 9 vitamin/mineral supplements, involving 4,565 patients with diabetes or impaired glucose tolerance, met the inclusion criteria and were analyzed. There were 58 controlled clinical trials involving individuals with diabetes or impaired glucose tolerance (42 randomized and 16 nonrandomized trials). Most studies involved patients with type 2 diabetes. Heterogeneity and the small number of studies per supplement precluded formal meta-analyses. Of these 58 trials, the direction of the evidence for improved glucose control was positive in 76% (44 of 58). Very few adverse effects were reported.

CONCLUSIONS: There is still insufficient evidence to draw definitive conclusions about the efficacy of individual herbs and supplements for diabetes; however, they appear to be generally safe. The available data suggest that several supplements may warrant further study. The best evidence for efficacy from adequately designed randomized controlled trials (RCTs) is available for Coccinia indica and American ginseng. Chromium has been the most widely studied supplement. Other supplements with positive preliminary results include Gymnema sylvestre, Aloe vera, vanadium, Momordica charantia, and nopal.

http://care.diabetesjournals.org/content/26/4/1277.long


Effects of Long-Term Treatment with Stevioside on the Type 2 Diabetic Goto-Kakizak GK) Rats – Potential as a New Antidiabetic drug.

Per Bendix Jeppesen, Søren Gregersen and Kjeld Hermansen Dept. Of Endocrinology and Metabolism C,
Aarhus Amtssygehus,

Extracts from leaves of Stevia rebaudiana Bertoni (SrB), have been used in traditional medicine in Paraguay and Brasil as treatment of diabetes. Recently, we demonstrated a direct insulinotropic effect of stevioside in vivo in isolated mouse islets and in vivo in diabetic rats.
Aims: To explore if stevioside exerts anti-hyperglycemic, glucagonostatic or anti-hypertensive effects during longterm feeding with stevioside in diabetic rats.

Methods: For 6 weeks period Goto-Kakizaki (GK) rats were given 0.025 g/kg BW/day of the glycoside stevioside (purity > 99 %) via the drinking water. The same amount of glucose as contained in the stevioside was given to the control group. The tail-blood pressure was measured every week. At week 5 an intraarterial catheter was inserted
in rats of both groups. After 6 days recovery the animals were exposed to an i.v. glucose tolerance test (2.0 g/kg BW) and blood samples were drawn througout a 180 min period.

Results: Stevioside caused a suppression of plasma glucose (incremental area under the curve (IAUC)): 985±20 (stevioside) vs 1575±21 (control) mM x 180 min, p<0.05. Corresponding to this the stevioside fed animals had an enhanced first phase insulin response compared to the control group (IAUC: 343±33 (stevioside) vs 136±24 (control) mU insulin x 30 min, p<0.05. The second phase insulin response, in both groups occurred to be increasing
during the entire observation period. The control group tended to have higher insulin output, however, not attaining statistical significance (IAUC: 4798±34 (control) vs 3776± (stevioside) mU x 150 min, p=0.38). Interestingly, stevioside concomitantly caused a suppression of the glucagon level corresponding to the first phase of the insulin response (IAUC: 2026±234 (stevioside) vs 3535±282 (control) pg/ml x 180 min, p<0.05. From week one and onwards a 7-9 % decrease in both the systolic (p<0.01) and diastolic (p<0.05) blood pressure was elucited by stevioside.

Conclusion: Stevioside normalizes first phase insulin response in diabetic rats during i.v glucose tolerance test, and possess anti-hyperglycemic, insulinotropic and glucagonostatic effects. In addition, stevioside exerted blood pressure suppression. Stevioside appears to be usefull in the treatment of type 2 diabetes and the metabolic syndrome.


Clinical Evaluation of Japanese Phytotherapy (Gosha-jinki-gan) in Diabetic Neuropathy: A Prospective Open Pilot Study
H. Reißenweber, S. Schaefer, W. Mueller-Felber*, and R. Landgraf Research Unit for Japanese Phytotherapy;
Medizinische Klinik - Innenstadt, University of Munich, Germany

Objective: Diabetic neuropathy is one of the severest and most common complications of diabetes mellitus. Direct therapeutic options are still limited. In Japan, a traditional prescription of ten East Asian medicinal herbs, Gosha-jinki-gan, has shown empirical efficacy for this indication which was confirmed in clinical trials. Pharmacological research using animal models revealed that Gosha-jinki-gan influences the metabolic situation as an
aldose reductase inhibitor, works analgetic and improves the microcirculation of peripheral nerves. We here present data of the first clinical trial conducted with a standardized phytoproduct (TJ-107) of this regimen in Europe according to ICH-GCP guidelines.

Materials and Methods: 25 diabetic patients (DM type 1 and 2, HbA1c £ 9, mean age 60.5 (±9)) complaining about a symptomatic stage of diabetic neuropathy with the leading symptoms paresthesia, numbness, or pain were enrolled in a prospective open treatment trial. Total observation period was 36 weeks with a treatment phase of 24 weeks and a follow-up phase of 8 weeks. Primary endpoints were changes in neuropathic symptoms and nerve conduction velocity (NCV). Secondary endpoints were changes in neuropathic deficits, quantitative sensory and autonomic testing, evaluation of microcirculation, Quality of Life and metabolic parameters.

Results: Descriptive statistics were applied for simple data, ANOVA for continous variables. A significant improvement of clinical symptoms by 52.5% was found applying a validated symptom score. There were no such changes for NCV. Evaluation of temperature and vibration sensation resulted in noteworthy, in part significant improvement. No clear change was observed for cardial and gastric autonomic neuropathy, and microcirculatory
testing. Quality of Life showed a trend towards improvement. After stopping the treatment, the symptoms aggravated again which was reflected in most test results after the follow-up phase.

Conclusions: In this pilot study with a limited Western study population and relatively short time range, noteworthy evidence was obtained that Gosha-jinki-gan (TJ-107) is a safe, tolerable and efficacious treatment for symptomatic stages of diabetic neuropathy. In five out of eight endpoints a remarkable or even significant improvement was demonstrated. Future results of a controlled clinical study will confirm if this herbal medication opens up anew therapeutic option for diabetic neuropathy within an international context.

The European Phytojournal Issue 2 draft www.escop.com


Herbal Supplements May Improve Glycemic Control in Diabetes Mellitus 
Suksomboon N, Poolsup N, Boonkaew S, Suthisisang CC. Meta-analysis of the effect of herbal supplement on glycemic control in type 2 diabetes. J Ethnopharmacol. 2011 Oct 11;137(3):1328-1333.

More than 400 herbs are used to treat diabetes mellitus. Reviews of these herbs suggest a positive effect in improving glycemic control with a good safety profile. Noting the lack of a meta-analysis of the use of single herbs for glycemic control in type 2 diabetes, the authors performed a systematic review and meta-analysis to evaluate the effect of herbs on glycemic control in type 2 diabetes to establish its therapeutic benefit in these patients.
The authors searched MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials from their inceptions to February 2011. To be included in the meta-analysis, a study had to be a randomized, placebo-controlled trial of a single herb that assessed glycemic control in type 2 diabetes, that was of at least 8 weeks duration, and that reported glycated hemoglobin (HbA1c) levels.

From the studies, the authors recorded year of publication, country, study design, patient characteristics, sample size, outcome measures, and dropout rate. The methodological quality of each study was assessed by using the Jadad scale, with a score of at least 3 out of 5 denoting high quality. The primary and secondary outcomes were HbA1c and fasting blood glucose (FBG) levels.
The authors identified 60 randomized, controlled trials of single herbs in patients with type 2 diabetes. Of those, 23 trials of 19 individual herbs met the inclusion criteria.
Of those 23 trials, 14 were further excluded because they used totally different kinds of herbs, and the results were not poolable. The remaining nine trials (including 487 subjects) assessing the effect of cassia (Chinese cinnamon; Cinnamomum aromaticum syn. C. cassia; 3 studies), sweet potato (Ipomoea batatas; 2 studies), milk thistle (Silybum marianum; 2 studies), and fenugreek (Trigonella foenum-graecum; 2 studies) were included in the meta-analysis.

In the 3 studies of Chinese cinnamon used in 182 patients, the effect of cinnamon was no better than that of placebo. The pooled mean differences were 0.10% (95% confidence interval [CI]: -0.15% to 0.35%) for HbA1c and -1.06 mg/dL (95% CI: -9.5 mg/dL to 7.38 mg/dL) for FBG. Sweet potato improved glycemic control significantly better than placebo in 2 studies. The pooled mean differences were -0.30% (95% CI: -0.57% to -0.04%; P=0.02) for HbA1c and -10.20 mg/dL (95% CI: -15.08 mg/dL to -5.32 mg/dL; P<0.0001) for FBG. Both HbA1c and FBG were reduced significantly with milk thistle compared with placebo in 2 studies. The pooled mean differences were -1.92% (95% CI: -3.32% to -0.51%; P=0.008) for HbA1c and -38.05 mg/dL (95% CI: -66.57 mg/dL to -9.54 mg/dL; P<0.009) for FBG. With fenugreek, HbA1c decreased significantly compared with placebo. In the 2 studies, the pooled mean difference was -1.13% (95% CI: -2.14% to -0.11%; P=0.03). No effect on FBG was observed, however.

Most of the trials considered the single herb as an adjunct to antidiabetic medications except in the sweet potato trials, which included type 2 diabetes patients treated with diet only. Heterogeneity was observed in the results of the milk thistle and fenugreek studies. The methodological quality scores of the studies varied from 2 to 5 points on the Jadad scale. Of the 9 trials, 5 were rated as high quality. Most of the studies did not describe a randomization method, and most did not mention whether placebo and the single herb were indistinguishable.

In this meta-analysis, sweet potato and milk thistle significantly improved HbA1c and FBG compared with placebo, whereas fenugreek significantly improved HbA1c only. An extract of sweet potato has been shown to enhance glucose uptake and delay carbohydrate absorption. Milk thistle contains silymarin, which is known to improve insulin resistance.
Although cassia had no effect on HbA1c and FBG in this meta-analysis, it was shown to enhance glucose uptake and glycogen synthesis in earlier studies. In this meta-analysis, the "nonsignificant effect of [cassia] on glycemic control may be attributable to low baseline HbA1c value and the influence of concurrent prescribed antidiabetic drugs," state the authors.

The authors suggest that the use of sweet potato, milk thistle, and fenugreek with dietary control or medications may offer an alternative for patients who cannot achieve glycemic control. "However, given the poor quality of the available evidence and high heterogeneity of the study results for milk thistle and fenugreek, further high-quality, large trials using standardized preparation are warranted to better elucidate the effects of these herbs on glycemic control," conclude the authors.



http://www.holisticonline.com/remedies/diabetes/diabetes_herbs.htm
http://www.diabetes-diabetic-diet.com/herbs_for_diabetes.htm
http://www.itmonline.org/arts/diabherb.htm
http://care.diabetesjournals.org/content/26/4/1277.long

http://www.liebertonline.com/doi/pdfplus/10.1089/act.2009.15605?cookieSet=1

Clinical Management Series: Natural Medicines Comprehensive Database


Uittreksel uit Les conseils  au comptoir  pour le diabète non insulino-dépendant 
Eric BECKER Préparateur en pharmacie     Octobre  2008 

GYMNEMA sylvestre  Asclepiadaceae: 
Dans les forets tropicales de l’Inde, on trouve une plante grimpante ligneuse dont la médecine  ayurvédique utilise ses propriétés thérapeutiques depuis plus de 2500 ans. Au cours des années   1920, les chercheurs indiens ont confirmés les propriétés hypoglycémiantes des feuilles de  Gymnema. 

Des études sur les animaux ont ensuite été effectués et ont prouvé que la plante  diminuait l’absorption intestinale du glucose, stimulait la production d’insuline et sensibilisait les  cellules à l’action de l’insuline. La recherche moderne a isolé l’acide gymnémique ou   « gymnémine » qui semble etre responsable de l’activité hypoglycémiante de la plante. 
Les chercheurs indiens ont mis au point l’extrait GS4 et ont mené deux éssais cliniques sans  groupe placebo. Au cours de l’un deux, ils ont comparé l’évolution d’un groupe témoin de 22 sujets  souffrant de diabète de type 2 et sous médications hypoglycémiante et 25 sujets contrôles. Ils ont 
reçu 400mg d’éxtraits de gymnéma par jour pendant 18 à 20mois. La majorité des sujets ont pu a  la fin de cette période réduire leur médication classique et cinq ont pu l’interrompre et s’en tenir  seulement à l’extrait pour réguler leur glycémie. 
Plutot que les feuilles séchées, on utilise de nos jours un extrait normalisé à 24% d’acide  gymnique souvent désigné sous le nom de GS4. 

ANACARDIUM occidentalis, Anacardiaceae 
Arbre a cime évasée d’environ 10 métres de hauteur. Les feuilles sont pérsistantes, alternes, ovales et coriaces. Les fleurs sont blanches teintées de rose, parfumées et réunies en inflorescences terminales. Les fruits possédent une coque acre et toxique abritant une amande  blanche, comestible « la noix de cajou ». Ils se forment sous un pédoncule gonflé, charnu et juteux  nommé « pomme de cajou »( faux fruit). Aujourd’hui largement cultivé en Afrique, aux Antilles, en  Asie du sud-est, au nord-est du Brésil et en Inde. La noix de cajou est la première exportation de la  Guinée-Bisseau. 
L’anacardier ou « pommier cajou » est utilisé principalement pour ses vertus hypoglycémiantes. 
Les macérations et  décoction de feuilles et d’écorces permettent de faire diminuer la glycémie chez les diabétiques.  Les propriétés ont été vérifiées scientifiquement. 80 grammes de feuilles pour 1 litre d’eau pendant 15 minutes. Filtrer après refroidissement et boire dans la journée. 

IRVINGIA gabonensis, 
Le manguier sauvage possède un fruit à la pulpe charnue et à noyau dur renfermant une seule graine très oléagineuse. En Afrique, les femmes s’en servent pour préparer le pain d’ODIKA. Expérimentalement, les chercheurs ont mis en évidence le pouvoir hypoglycémiant de la graine  d’Irvingia en donnant 4 grammes par jour de mucilage de graine pendant quatre semaines à des diabétiques de type 2. 

FICUS bengalensis, 
Les racines aériennes contiennent plusieurs molécules de la famille des glucosides et des flavonoides présentant des propriétés hypoglycémiantes. L’activité du glucoside « leucopélargonidine » montre un effet hypoglycémiant et hypolipidémiant, avec une augmentation  significative de la libération d’insuline. Les tanins de l’écorce vont conforter l’action du glucoside en  freinant l’activité enzymatique de la dégradation des polysaccharides.. 



Ginseng gunstig bij diabetes via hormonale interacties
Ginseng is een van de populairste kruiden in Aziatische landen en wordt onder meer genomen door diabetici. Koreaanse onderzoekers zetten een onderzoek bij gezonde, menopauzale vrouwen op touw om de werkingsmechanismen te ontrafelen. Zij namen aan dat ginseng via hormonale effecten invloed uitoefent op het glucose- en insulinemetabolisme. Inderdaad zagen de onderzoekers na twee weken effecten op aldosteron, groeihormoon en DHEAS, naast een daling van nuchtere glucosespiegel en insulineresistentie.

De daling van aldosteron was het sterkst en kan al gedeeltelijk de effecten op glucose en insuline verklaren. Activatie van aldosteron (samen met renine en angiotensine) is een van de vele factoren in de ontwikkeling van insulineresistentie.
Verder namen groeihormoon, DHEAS en oestradiol toe bij de vrouwen die ginseng namen. Volgens een meer diepgaande analyse van de gegevens zouden toename van DHEAS en oestradiol veeleer gevolg zijn van de toename van groeihormoon. DHEAS daalt van nature tijdens veroudering tot een fractie van het oorspronkelijke niveau. Een toename is dus zeker een gunstig teken.

Het metabool syndroom treft westerse landen hard, in het bijzonder bepaalde bevolkingsgroepen zoals vrouwen na de menopauze. Minstens een derde van Amerikaanse postmenopauzale vrouwen heeft symptomen van het metabool syndroom. Verhoging van bloedglucose, bloedvetten en insulineresistentie zijn niet te enige symptomen, ook hormonale veranderingen grijpen plaats.
Lage oestradiol is bijvoorbeeld een belangrijke risicofactor. Dat toonden ook studies met hormoonsubstitutie aan, welke het risico op metabool syndroom met 36 % konden verlagen. Hormoonsubstitutie is niet meer de geschikte behandeling van menopauzale problemen wegens bijwerkingen, verhoogd optreden van kanker en afwezigheid van cardiovasculaire bescherming.

Referenties
Lee KJ, Lee SY et al. Diabetes-ameliorating effects of fermented red ginseng and causal effects on hormonal interactions: testing the hypothesis by multiple group path analysis. J Med Food. 2013 May;16(5):383-95



Wetenschappelijk onderzoek: Planten en Suikerziekte

Kempf K, Rathmann W, Herder C: Impaired glucose regulation and type 2 diabetes in children and adolescents.
Diabetes Metab Res Rev 2008, 24(6):427-437. PubMed Abstract | Publisher Full Text
American Diabetes Association: All about diabetes. [http://www.diabetes.org/about-diabetes.jsp] webcite
Yin J, Zhang H, Ye J: Traditional Chinese medicine in treatment of metabolic syndrome.
Endocr Metab Immune Disord Drug Targets 2008, 8(2):99-111. PubMed Abstract |Publisher Full Text | PubMed Central Full Text
Xiang YZ, Shang HC, Gao XM, Zhang BL: A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials.
Phytother Res 2008, 22(7):851-858. PubMed Abstract | Publisher Full Text
Yu R, Hui H, Shlomo M: Insulin Secretion and Action, Endocrinology (2nd). Humana Press; 2005::311-319.
Hui H, Dotta F, Di Mario U, Perfetti R: Role of caspases in the regulation of apoptotic pancreatic islet beta-cells death.
J Cell Physiol 2004, 200(2):177-200. PubMed Abstract | Publisher Full Text
Modi P: Diabetes beyond insulin: review of new drugs for treatment of diabetes mellitus.
Curr Drug Discov Technol 2007, 4(1):39-47. PubMed Abstract | Publisher Full Text
Hui H, Zhao X, Perfetti R: Structure and function studies of glucagon-like peptide-1 (GLP-1): the designing of a novel pharmacological agent for the treatment of diabetes.
Diabetes Metab Res Rev 2005, 21(4):313-331. PubMed Abstract | Publisher Full Text
Garber AJ, Spann SJ: An overview of incretin clinical trials.
J Fam Pract 2008, 57(9 Suppl):S10-8. PubMed Abstract
Neustadt J, Pieczenik SR: Medication-induced mitochondrial damage and disease.
Mol Nutr Food Res 2008, 52(7):780-788. PubMed Abstract | Publisher Full Text
Kuriyan R, Rajendran R, Bantwal G, Kurpad AV: Effect of supplementation of Coccinia cordifolia extract on newly detected diabetic patients.
Diabetes Care 2008, 31(2):216-220. PubMed Abstract | Publisher Full Text
Angelova N, Kong HW, Heijden R, Yang SY, Choi YH, Kim HK, Wang M, Hankemeier , Greef J, Xu G, Verpoorte R: Recent methodology in the phytochemical analysis of ginseng.
Phytochem Anal 2008, 19(1):2-16. PubMed Abstract | Publisher Full Text
Shan JJ, Rodgers K, Lai CT, Sutherland SK: Challenges in natural health product research: The importance of standardization.
Proc West Pharmacol Soc 2007, 50:24-30. PubMed Abstract
Liu RH: Potential synergy of phytochemicals in cancer prevention: mechanism of action.
J Nutr 2004, 134(12 Suppl):3479S-3485S. PubMed Abstract | Publisher Full Text
Kawase M, Wang R, Shiomi T, Saijo R, Yagi K: Antioxidative activity of (-)-epigallocatechin-3-(3"-O-methyl)gallate isolated from fresh tea leaf and preliminary results on its biological activity.
Biosci Biotechnol Biochem 2000, 64(10):2218-2220. PubMed Abstract | Publisher Full Text
Yue PY, Mak NK, Cheng YK, Leung KW, Ng TB, Fan DTP, Yeung HW, Wong RNS:Pharmacogenomics and the Yin/Yang actions of ginseng: anti-tumor, angiomodulating and steroid-like activities of ginsenosides.
Chin Med 2007, 2:6. PubMed Abstract | BioMed Central Full Text | PubMed Central Full Text
Kang KS, Yamabe N, Kim HY, Park JH, Yokozawa T: Therapeutic potential of 20(S)-ginsenoside Rg(3) against streptozotocin-induced diabetic renal damage in rats.
Eur J Pharmacol 2008, 591(1–3):266-272. PubMed Abstract | Publisher Full Text
Kim K, Kim HY: Korean red ginseng stimulates insulin release from isolated rat pancreatic islets.
J Ethnopharmacol 2008, 120(2):190-195. PubMed Abstract | Publisher Full Text
Kim HY, Kang KS, Yamabe N, Nagai R, Yokozawa T: Protective effect of heat-processed American ginseng against diabetic renal damage in rats.
J Agric Food Chem 2007, 55(21):8491-8497. PubMed Abstract | Publisher Full Text
Chung SH, Choi CG, Park SH: Comparisons between white ginseng radix and rootlet for antidiabetic activity and mechanism in KKAy mice.
Arch Pharm Res 2001, 24(3):214-218. PubMed Abstract | Publisher Full Text
Vuksan V, Sung MK, Sievenpiper JL, Stavro PM, Jenkins AL, Di Buono M, Lee KS, Leiter LA, Nam KY, Arnason JT, Choi M, Naeem A: Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety.
Nutr Metab Cardiovasc Dis 2008, 18(1):46-56. PubMed Abstract | Publisher Full Text
Xie JT, Aung HH, Wu JA, Attel AS, Yuan CS: Effects of American ginseng berry extract on blood glucose levels in ob/ob mice.
Am J Chin Med 2002, 30(2–3):187-194. PubMed Abstract | Publisher Full Text
Xie JT, Wang CZ, Ni M, Wu JA, Mehendale SR, Aung HH, Foo A, Yuan CS: American ginseng berry juice intake reduces blood glucose and body weight in ob/ob mice.
J Food Sci 2007, 72(8):S590-594. PubMed Abstract | Publisher Full Text |PubMed Central Full Text
Dey L, Xie JT, Wang A, Wu J, Maleckar SA, Yuan CS: Anti-hyperglycemic effects of ginseng: comparison between root and berry.
Phytomedicine 2003, 10(6–7):600-605. PubMed Abstract | Publisher Full Text
Dey L, Attele AS, Yuan CS: Alternative therapies for type 2 diabetes.
Altern Med Rev 2002, 7(1):45-58. PubMed Abstract | Publisher Full Text
Vogler BK, Pittler MH, Ernst E: The efficacy of ginseng: A systematic review of randomized clinical trials.
Eur J Clin Pharmacol 1999, 55(8):567-575. PubMed Abstract | Publisher Full Text
Kimura M, Kimura I, Chem FJ: Combined potentiating effect of byakko-ka-ninjin-to, its constituents, rhizomes of Anemarrhena asphodeloides, tomosaponin A-III, and calcium on pilocarpine-induced saliva secretion in streptozocin-diabetic mice.
Biol Pharm Bull 1996, 19(7):926-931. PubMed Abstract
Ng TB, Yeung HW: Hypoglycemic constituents of Panax ginseng.
Gen Pharmacol 1985, 16(6):549-552. PubMed Abstract
Waki I, Kyo H, Yasuda M, Kimura M: Effects of a hypoglycemic component of ginseng radix on insulin biosynthesis in normal and diabetic animals.
J Pharmacobiodyn 1982, 5(8):547-554. PubMed Abstract
Hwang JT, Lee MS, Kim HJ, Sung MJ, Kim HY, Kim MS, Kwon DY: Antiobesity effect of ginsenoside Rg3 involves the AMPK and PPAR-gamma signal pathways.
Phytother Res 2009, 23(2):262-266. PubMed Abstract | Publisher Full Text
Lee WK, Kao ST, Liu IM, Cheng JT: Ginsenoside Rh2 is one of the active principles of Panax ginseng root to improve insulin sensitivity in fructose-rich chow-fed rats.
Horm Metab Res 2007, 39(5):347-354. PubMed Abstract | Publisher Full Text
Banz WJ, Iqbal MJ, Bollaert M, Chickris N, James B: Higginbotham DA, Peterson R, Murphy L: Ginseng modifies the diabetic phenotype and genes associated with diabetes in the male ZDF rat.
Phytomedicine 2007, 14(10):681-689. PubMed Abstract | Publisher Full Text
Wu Z, Luo JZ, Luo L: American ginseng modulates pancreatic beta cell activities.
Chin Med 2007, 2:11. PubMed Abstract | BioMed Central Full Text | PubMed Central Full Text
Lee WK, Kao ST, Liu IM, Cheng JT: Increase of insulin secretion by ginsenoside Rh2 to lower plasma glucose in Wistar rats.
Clin Exp Pharmacol Physiol 2006, 33(1–2):27-32. PubMed Abstract | Publisher Full Text
Kim HY, Kim K: Protective effect of ginseng on cytokine-induced apoptosis in pancreatic beta-cells.
J Agric Food Chem 2007, 55(8):2816-2823. PubMed Abstract | Publisher Full Text
Xiang YZ, Shang HC, Gao XM, Zhang BL: A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials.
Phytother Res 2008, 22(7):851-858. PubMed Abstract | Publisher Full Text
efer D, Pantuso T: Panax ginseng.
Am Fam Physician 2003, 68(8):1539-1542. PubMed Abstract
Vuksan V, Sievenpiper JL, Koo VY, Francis T, Beljan-Zdravkovic U, Xu Z, Vidgen E: Related Articles American ginseng (Panax quinquefolius L) reduces postprandial glycemia in nondiabetic subjects and subjects with type 2 diabetes mellitus.
Arch Intern Med 2000, 160(7):1009-1013. PubMed Abstract | Publisher Full Text
Abd El Sattar El Batran S, El-Gengaihi SE, El Shabrawy OA: Some toxicological studies of Momordica charantia L. on albino rats in normal and alloxan diabetic rats.
J Ethnopharmacol 2006, 108(2):236-242. PubMed Abstract | Publisher Full Text
Miller LG: Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions.
Arch Intern Med 1998, 158(20):2200-2211. PubMed Abstract | Publisher Full Text
McCarty MF: Does bitter melon contain an activator of AMP-activated kinase?Med Hypotheses 2004, 63(2):340-343. PubMed Abstract | Publisher Full Text
Krawinkel MB, Keding GB: Bitter gourd (Momordica Charantia): A dietary approach to hyperglycemia.Nutr Rev 2006, 64:331-337. PubMed Abstract | Publisher Full Text
Harinantenaina L, Tanaka M, Takaoka S, Oda M, Mogami O, Uchida M, Asakawa Y:Momordica charantia constituents and antidiabetic screening of the isolated major compounds.Chem Pharm Bull (Tokyo) 2006, 54(7):1017-1021. PubMed Abstract | Publisher Full Text
Han C, Hui Q, Wang Y: Hypoglycaemic activity of saponin fraction extracted from Momordica charantia in PEG/salt aqueous two-phase systems.Nat Prod Res 2008, 22(13):1112-1119. PubMed Abstract | Publisher Full Text
Shetty AK, Kumar GS, Sambaiah K, Salimath PV: Effect of bitter gourd (Momordica charantia) on glycaemic status in streptozotocin induced diabetic rats.Plant Foods Hum Nutr 2005, 60(3):109-112. PubMed Abstract | Publisher Full Text
Chao CY, Huang C: Bitter Gourd (Momordica charantia) Extract Activates Peroxisome Proliferator-Activated Receptors and Upregulates the Expression of the Acyl CoA Oxidase Gene in H4IIEC3 Hepatoma Cells.J Biomed Sci 2003, 10:782-791. PubMed Abstract
Chuang CY, Hsu C, Chao CY, Wein YS, Kuo YH, Huang CJ: Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPARalpha in bitter gourd (Momordica charantia L).J Biomed Sci 2006, 13(6):763-772. PubMed Abstract | Publisher Full Text
Tan MJ, Ye JM, Turner N, Hohnen-Behrens C, Ke CQ, Tang CP, Chen T, Weiss HC, Gesing ER, Rowland A, James DE, Ye Y: Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway.Chem Biol. 2008, 15(3):263-273. PubMed Abstract | Publisher Full Text
Cefalu WT, Ye J, Wang ZQ: Efficacy of dietary supplementation with botanicals on carbohydrate metabolism in humans.
Endocr Metab Immune Disord Drug Targets. 2008, 8(2):76-81. Publisher Full Text
Basch E, Gabardi S, Ulbricht C: Bitter melon (Momordica charantia): a review of efficacy and safety.Am J Health Syst Pharm 2003, 60(4):356-359. PubMed Abstract | Publisher Full Text
Chen Q, Chan LL, Li ET: Bitter melon (Momordica charantia) reduces adiposity, lowers serum insulin and normalizes glucose tolerance in rats fed a high fat diet. J Nutr 2003, 133(4):1088-1093. PubMed Abstract | Publisher Full Text
Yu HH, Kim KJ, Cha JD: Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus.J Med Food 2005, 8(4):454-461. PubMed Abstract | Publisher Full Text
Tang LQ, Wei W, Chen LM, Liu S: Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats.J Ethnopharmacol 2006, 108(1):109-115. PubMed Abstract | Publisher Full Text
Zhou L, Yang Y, Wang X, Liu S, Shang W, Yuan G, Li F, Tang J, Chen M, Chen J: Berberine stimulates glucose transport through a mechanism distinct from insulin.Metabolism 2007, 56(3):405-412. PubMed Abstract | Publisher Full Text
Zhou JY, Zhou SW, Zhang KB, Tang JL, Guang LX, Ying Y, Xu Y, Zhang L, Li DD: Chronic effects of berberine on blood, liver glucolipid metabolism and liver PPARs expression in diabetic hyperlipidemic rats.Biol Pharm Bull 2008, 31(6):1169-1176. PubMed Abstract | Publisher Full Text
Kong WJ, Zhang H, Song DQ, Xue R, Zhao W, Wei J, Wang YM, Shan N, Zhou ZX, Yang P, You XF, Li ZR, Si SY, Zhao LX, Pan HN, Jiang JD: Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression.Metabolism 2009, 58(1):109-119. PubMed Abstract | Publisher Full Text
Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, Hohnen-Behrens C, Gosby A, Kraegen EW, James DE, Kim JB: Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states.Diabetes 2006, 55(8):2256-2264. PubMed Abstract | Publisher Full Text
Zhou L, Wang X, Shao L, Yang Y, Shang W, Yuan G, Jiang B, Li F, Tang J, Jing H, Chen M:Berberine acutely inhibits insulin secretion from beta-cells through 3', 5'-cyclic adenosine 5'-monophosphate signaling pathway.Endocrinology 2008, 149(9):4510-4518. PubMed Abstract | Publisher Full Text
Liu WH, Hei ZQ, Nie H, Tang FT, Huang HQ, Li XJ, Deng YH, Chen SR, Guo FF, Huang WG, Chen FY, Liu PQ: Berberine ameliorates renal injury in streptozotocin-induced diabetic rats by suppression of both oxidative stress and aldose reductase.Chin Med J (Engl) 2008, 121(8):706-712. PubMed Abstract | Publisher Full Text
Turner N, Li JY, Gosby A, To SW, Cheng Z, Miyoshi H, Taketo MM, Cooney GJ, Kraegen EW, James DE, Hu LH, Li J, Ye JM: Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action.Diabetes 2008, 57(5):1414-1418. PubMed Abstract | Publisher Full Text Liu WH, Hei ZQ, Nie H, Tang FT, Huang HQ, Li XJ, Deng YH, Chen SR, Guo FF, Huang WG, Chen FY, Liu PQ: Berberine ameliorates renal injury in streptozotocin-induced diabetic rats by suppression of both oxidative stress and aldose reductase.Chin Med J (Engl) 2008, 121(8):706-712. PubMed Abstract | Publisher Full Text
Yin J, Xing H, Ye J: Efficacy of berberine in patients with type 2 diabetes mellitus.Metabolism 2008, 57(5):712-717. PubMed Abstract | Publisher Full Text |PubMed Central Full Text
Winters WD, Huo YS, Yao DL: Inhibition of the progression of type 2 diabetes in the C57BL/6J mouse model by an anti-diabetes herbal formula. Phytother Res 2003, 17(6):591-598. PubMed Abstract | Publisher Full Text
Wang L, Higashiura K, Ura N, Miura T, Shimamoto K: Chinese medicine, Jiang-Tang-Ke-Li, improves insulin resistance by modulating muscle fiber composition and muscle tumor necrosis factor-alpha in fructose-fed rats.Hypertens Res 2003, 26(7):527-532. PubMed Abstract | Publisher Full Text
Kimura I, Nakashima N, Sugihara Y, Fu-jun C, Kimura M: The antihyperglycaemic blend effect of traditional chinese medicine byakko-ka-ninjin-to on alloxan and diabetic KK-CA(y) mice. Phytother Res 1999, 13(6):484-488. PubMed Abstract | Publisher Full Text
Yoshikawa M, Shimada H, Nishida N, Li Y, Toguchida I, Yamahara J, Matsuda H:Antidiabetic principles of natural medicines. II. Aldose reductase and alpha-glucosidase inhibitors from Brazilian natural medicine, the leaves of Myrcia multiflora DC. (Myrtaceae): structures of myrciacitrins I and II and myrciaphenones A and B. Chem Pharm Bull (Tokyo) 1998, 46(1):113-119. PubMed Abstract
Ziegenfuss TN, Hofheins JE, Mendel RW, Landis J, Anderson RA: Effects of a water-soluble cinnamon extract on body composition and features of the metabolic syndrome in pre-diabetic men and women.J Int Soc Sports Nutr 2006, 3:45-53. PubMed Abstract | BioMed Central Full Text |PubMed Central Full Text
Anderson RA: Chromium and polyphenols from cinnamon improve insulin sensitivity.Proc Nutr Soc 2008, 67(1):48-53. PubMed Abstract | Publisher Full Text
Dannemann K, Hecker W, Haberland H, Herbst A, Galler A, Schäfer T, Brähler E, Kiess W, Kapellen TM: Use of complementary and alternative medicine in children with type 1 diabetes mellitus – prevalence, patterns of use, and costs.Pediatr Diabetes 2008, 9(3 Pt 1):228-235. PubMed Abstract | Publisher Full Text
Maroo J, Vasu VT, Aalinkeel R, Gupta S: Glucose lowering effect of aqueous extract of Enicostemma littorale Blume in diabetes: a possible mechanism of action.J Ethnopharmacol 2002, 81(3):317-320. PubMed Abstract | Publisher Full Text
Puri D: The insulinotropic activity of a Nepalese medicinal plant Biophytum sensitivum: preliminary experimental study.J Ethnopharmacol 2001, 78(1):89-93. PubMed Abstract | Publisher Full Text
Ludvik B, Waldhausl W, Prager R, Kautzky-Willer A, Pacini G: Mode of action of ipomoea batatas (Caiapo) in type 2 diabetic patients. Metabolism 2003, 52(7):875-880. PubMed Abstract | Publisher Full Text
Ludvik B, Hanefeld M, Pacini G: Improved metabolic control by Ipomoea batatas (Caiapo) is associated with increased adiponectin and decreased fibrinogen levels in type 2 diabetic subjects.Diabetes Obes Metab 2008, 10(7):586-592. PubMed Abstract | Publisher Full Text
Miura T, Furuta K, Yasuda A, Iwamoto N, Kato M, Ishihara E, Ishida T, Tanigawa K:Antidiabetic effect of nitobegiku in KK-Ay diabetic mice.Am J Chin Med 2002, 30(1):81-86. PubMed Abstract | Publisher Full Text
Ye F, Shen Z, Xie M: Alpha-glucosidase inhibition from a Chinese medical herb (Ramulus mori) in normal and diabetic rats and mice.
Phytomedicine 2002, 9(2):161-166. PubMed Abstract | Publisher Full Text
Palit P, Furman BL, Gray AI: Novel weight-reducing activity of Galega officinalis in mice.
J Pharm Pharmacol 1999, 51(11):1313-1319. PubMed Abstract | Publisher Full Text
Devi BA, Kamalakkannan N, Prince PS: Supplementation of fenugreek leaves to diabetic rats. Effect on carbohydrate metabolic enzymes in diabetic liver and kidney.
Phytother Res 2003, 17(10):1231-1233. PubMed Abstract | Publisher Full Text
Basch E, Ulbricht C, Kuo G, Szapary P, Smith M: Therapeutic applications of fenugreek.
Altern Med Rev 2003, 8(1):20-27. PubMed Abstract | Publisher Full Text
Grover JK, Vats V, Yadav S: Effect of feeding aqueous extract of Pterocarpus marsupium on glycogen content of tissues and the key enzymes of carbohydrate metabolism.
Mol Cell Biochem 2002, 241(1–2):53-59. PubMed Abstract | Publisher Full Text
Dhanabal SP, Kokate CK, Ramanathan M, Kumar EP, Suresh B: Hypoglycaemic activity of Pterocarpus marsupium Roxb.
Phytother Res 2006, 20(1):4-8. PubMed Abstract | Publisher Full Text
Ramachandran B, Kandaswamy M, Narayanan V, Subramanian S: Insulin mimetic effects of macrocyclic binuclear oxovanadium complexes on streptozotocin-induced experimental diabetes in rats.
Diabetes Obes Metab 2003, 5(6):455-461. PubMed Abstract | Publisher Full Text
Zuo YQ, Liu WP, Niu YF, Tian CF, Xie MJ, Chen XZ, Li L: Bis(alpha-furancarboxylato)oxovanadium(IV) prevents and improves dexamethasone-induced insulin resistance in 3T3-L1 adipocytes.
J Pharm Pharmacol 2008, 60(10):1335-1340. PubMed Abstract | Publisher Full Text
Chen YL, Huang HC, Weng YI, Yu YJ, Lee YT: Morphological evidence for the antiatherogenic effect of scoparone in hyperlipidaemic diabetic rabbits.
Cardiovasc Res 1994, 28(11):1679-1685. PubMed Abstract | Publisher Full Text
Kim EK, Kwon KB, Lee JH, Park BH, Park JW, Lee HK, Jhee EC, Yang JY: Inhibition of cytokine-mediated nitric oxide synthase expression in rat insulinoma cells by scoparone.Biol Pharm Bull 2007, 30(2):242-246. PubMed Abstract | Publisher Full Text
Shanmugasundaram KR, Panneerselvam C, Samudram P, Shanmugasundaram ER: The insulinotropic activity of Gymnema sylvestre, R. Br. An Indian medical herb used in controlling diabetes mellitus.Pharmacol Res Commun 1981, 13(5):475-486. PubMed Abstract | Publisher Full Text
Kanetkar P, Singhal R, Kamat M: Gymnema sylvestre: A Memoir.J Clin Biochem Nutr 2007, 41(2):77-81. PubMed Abstract | Publisher Full Text |PubMed Central Full Text
Goto H, Shimada Y, Tanikawa K, Sato S, Hikiami H, Sekiya N, Terasawa K: Clinical evaluation of the effect of daio (rhei rhizoma) on the progression of diabetic nephropathy with overt proteinuria.Am J Chin Med 2003, 31(2):267-275. PubMed Abstract | Publisher Full Text
Mansour HA, Newairy AS, Yousef MI, Sheweita SA: Biochemical study on the effects of some Egyptian herbs in alloxan-induced diabetic rats. Toxicology 2002, 170(3):221-228. PubMed Abstract | Publisher Full Text
Knecht KT, Nguyen H, Auker AD, Kinder DH: Effects of extracts of lupine seed on blood glucose levels in glucose resistant mice: antihyperglycemic effects of Lupinus albus (white lupine, Egypt) and Lupinus caudatus (tailcup lupine, Mesa Verde National Park).J Herb Pharmacother 2006, 6(3–4):89-104. PubMed Abstract
Kim MJ, Ryu GR, Chung JS, Sim SS, Min do S, Rhie DJ, Yoon SH, Hahn SJ, Kim MS, Jo YH:Protective effects of epicatechin against the toxic effects of streptozotocin on rat pancreatic islets: in vivo and in vitro.Pancreas 2003, 26(3):292-299. PubMed Abstract | Publisher Full Text Bhathena SJ, Velasquez MT: Beneficial role of dietary phytoestrogens in obesity and diabetes.Am J Clin Nutr 2002, 76(6):1191-1201. PubMed Abstract | Publisher Full Text
Venkateswaran S, Pari L: Effect of Coccinia indica leaf extract on plasma antioxidants in streptozotocin-induced experimental diabetes in rats.
Phytother Res 2003, 17(6):605-608. PubMed Abstract | Publisher Full Text
Ojewole JA: Hypoglycaemic effect of Clausena anisata (Willd) Hook methanolic root extract in rats.J Ethnopharmacol 2002, 81(2):231-237. PubMed Abstract | Publisher Full Text
Ji Y, Chen S, Zhang K, Wang W: Effects of Hovenia dulcis Thunb on blood sugar and hepatic glycogen in diabetic mice.Zhongyaocai 2002, 25(3):190-191. PubMed Abstract
Ghannam N, Kingston M, Al-Meshaal IA, Tariq M, Parman NS, Woodhouse N: The antidiabetic activity of aloes: preliminary clinical and experimental observations.Horm Res 1986, 24(4):288-294. PubMed Abstract | Publisher Full Text
Okyar A, Can A, Akev N, Baktir G, Sütlüpinar N: Effect of Aloe vera leaves on blood glucose level in type I and type II diabetic rat models.
Phytother Res 2001, 15(2):157-161. PubMed Abstract | Publisher Full Text
Yanardag R, Bolkent S, Karabulut-Bulan O, Tunali S: Effects of vanadyl sulfate on kidney in experimental diabetes.Biol Trace Elem Res 2003, 95(1):73-85. PubMed Abstract | Publisher Full Text
Thompson KH, Liboiron BD, Sun Y, Bellman KD, Setyawati IA, Patrick BO, Karunaratne V, Rawji G, Wheeler J, Sutton K, Bhanot S, Cassidy C, McNeill JH, Yuen VG, Orvig C:Preparation and characterization of vanadyl complexes with bidentate maltol-type ligands; in vivo comparisons of anti-diabetic therapeutic potential.J Biol Inorg Chem 2003, 8(1–2):66-74. PubMed Abstract | Publisher Full Text
Karmaker S, Saha TK, Sakurai H: Antidiabetic activity of the orally effective vanadyl-poly (gamma-glutamic acid) complex in streptozotocin(STZ)-induced type 1 diabetic mice.J Biomater Appl 2008, 22(5):449-464. PubMed Abstract | Publisher Full Text
Xu H, Williams KM, Liauw WS, Murray M, Day RO, McLachlan AJ: Effects of St John's wort and CYP2C9 genotype on the pharmacokinetics and pharmacodynamics of gliclazide.Br J Pharmacol 2008, 153(7):1579-1586. PubMed Abstract | Publisher Full Text |PubMed Central Full Text



Comments