Tropaeolum majus / Oost-Indische kers
Oost-Indische kers.
Zoals de naam al aangeeft, komt deze tuinplant uit de tropen en dat blijkt ook wel uit de vurige kleuren en de enorme licht- en warmtekracht die zij uitstraalt. De officiële botanische naam is Tropaeolum majus, wat zoveel als trofee betekent. De naamgevers hebben zich daarbij laten inspireren door het Griekse verleden. De Grieken namen altijd trofeeën mee naar het vaderland als de strijd gestreden was. Bovendien lijken de bladeren wel wat op schilden en de bloemen met hun lange sporen hebben veel weg van de helmen die de krijgers op het hoofd droegen.
De Oost-Indische kers is een plant die kracht geeft aan wie zich moe en uitgeput voelt. De Romeinse geneesheer Plinius beweerde reeds dat een lui of moe mens deze plant moest eten om hem uit zijn traagheid te wekken. Het typische van deze plant is inderdaad de grote inwendige warmte. Deze zetelt chemisch gezien in de benzyl-mosterd-olie, die ook de scherpe smaak geeft. Zowel de zaden als de bloemen en bladeren bezitten dezelfde pittigheid. De smaak van de bladeren komt goed tot hun recht in soepen en salades. De fijngehakte jonge bladeren vormen een pittige toevoeging aan salades. De scherpe mosterd-olie werkt als een antibioticum op ongewenste bacteriën, schimmels en virussen. Kauwen op een vers blad ontsmet mond en keel. Volgens een Griekse sage zou de Oost-Indische kers de metamorfose zijn van een jager. Met de zaden van deze plant zou men volgens het volksgeloof slangen kunnen verjagen. De bloemen zouden 's nachts licht geven. Al heb ik daar persoonlijk nog niks van gemerkt.
Recept: Oost indische kers pesto
Ingrediënten: 2 handenvol blad van de Oost Indische kers, 1 handje verse walnoten, scheutje olijfolie/ peper en zout naar smaak/ eventueel wat geraspte oude kaas of Parmezaanse kaas
Hak de walnoten fijn in een kleine keukenmachine. hak vervolgens het blad fijn. Voeg gehakte walnoten, zout, peper en een scheutje olie toe, en de kaas indien je deze gebruikt, en hak weer tot het goed gemengd is. Voeg meer olie toe indien nodig totdat je een zachte, smeerbare consistentie hebt. Variatie met knoflook en pijnboompitten.
Recept: Groentesoep met Oost Indisch kersblad
Deze soep maak je van 2 aardappelen, een ui, een courgette en eventueel een wortel. Deze groenten fijnsnijden en fruiten in wat olie. Na zo’n 5 minuten voeg je een handvol Oost-Indische kers bladeren toe (15 à 20) en laat deze 5 minuten meestoven. Vervolgens een liter groentebouillon erbij en alles nog 10 minuten laten koken. Met de mixer pureren. Eventueel nog wat zout en peper toevoegen en vers gesnipperd kersblad en bloem.
Groene onrijpe zaden zijn zo eetbaar. Ze hebben van de hele plant de meest uitgesproken smaak. Door ze in zuur te conserveren krijg je een soort kappertjes. Om deze “kappertjes” te maken pluk je de nog groene zaden. Wassen, bestrooien met zout en ze een nachtje laten staan. De volgende dag de zaden afspoelen en goed laten drogen in het zonnetje. De zaden samen met wat kruiderij , zoals gember, knoflook, koriander en peper, in een bokaal doen. Deze pot dan vullen met 6 delen azijn en 1 deel suikeroplossing. Een maand op een koele plaats laten staan
Medicinal Uses vlgs Pfaff Database
Antibacterial; Antibiotic; Antifungal; Antiseptic; Aperient; Depurative; Diuretic; Emmenagogue; Expectorant; Laxative; Stimulant.
Nasturtium has long been used in Andean herbal medicine as a disinfectant and wound-healing herb, and as an expectorant to relieve chest conditions[254]. All parts of the plant appear to be antibiotic and an infusion of the leaves can be used to increase resistance to bacterial infections and to clear nasal and bronchial catarrh[254]. The remedy seems to both reduce catarrh formation and stimulate the clearing and coughing up of phlegm[254].
The leaves are antibacterial, antifungal, antiseptic, aperient, depurative, diuretic, emmenagogue, expectorant, laxative and stimulant[7, 21, 238]. A glycoside found in the plant reacts with water to produce an antibiotic[238]. The plant has antibiotic properties towards aerobic spore forming bacteria[61]. Extracts from the plant have anticancer activity[218]. The plant is taken internally in the treatment of genito-urinary diseases, respiratory infections, scurvy and poor skin and hair conditions[238]. Externally it makes an effective antiseptic wash and is used in the treatment of baldness, minor injuries and skin eruptions[238]. Any part of the plant can be used, it is harvested during the growing season and used fresh[238].
Other Uses
Insecticide; Oil; Repellent.
The seeds yield a high percentage of a drying oil that can be used in making paints, varnish etc[7].
The growing plant attracts aphids away from other plants. Research indicates that aphids flying over plants with orange or yellow flowers do not stop, nor do they prey on plants growing next to or above the flowers[201].
An insecticide can be made from an infusion of leaves and soap flakes[201].
Uit Afbeeldingen der artseny-gewassen met derzelver Nederduitsche en Latynsche beschryvingen 1796-1813 in zeven delen Plaat 314
Gebruik. Oostindische Kers, klimmende Indische Viool zijn nog als benaamingen van deeze Plant bekend. Bloem en Bladen hebben eene aangenaame scherpe Smaak en worden uit dien hoofde als Kruidenaarijen in het huishoudelijke gebruikt. Het Zaad in Azijn bewaard is niet onaangenaam. Schoon de Plant niet regtstreeks als Artsenij-middel gebruikt word, zo heeft zij met dit al een Urin-drijvend en Scheurbuik tegenwerkend vermogen, en zoude als zodanig bij gebrek van andere Middelen kunnen gebruikt worden. Ook zullen de Vrugten zo wel droog, als versch zeer zagt purgeeren.
Wetenschappelijk onderzoek
J Ethnopharmacol. 2011 Mar 24;134(2):363-72. Antihypertensive effects of isoquercitrin and extracts from Tropaeolum majus L.: evidence for the inhibition of angiotensin converting enzyme.Previous studies have shown that the extracts obtained from Tropaeolum majus L. exhibit pronounced diuretic properties. In the present study, we assessed whether the hypotensive and/or antihypertensive mechanism of hydroethanolic extract (HETM), semi-purified fraction (TMLR) obtained from T. majus and the flavonoids isoquercitrin (ISQ) and kaempferol (KPF) can be mediated by their interaction with angiotensin converting enzyme (ACE).
Gasparotto Junior A, Gasparotto FM, Lourenço EL, et al. Antihypertensive effects of isoquercitrin and extracts from Tropaeolum majus L.: evidence for the inhibition of angiotensin converting enzyme. J Ethnopharmacol 2011 Mar 24; 134(2):363-72.
Gasparotto Junior A, Gasparotto FM, Boffo MA, et al. Diuretic and potassium-sparing effect of isoquercitrin-an active flavonoid of Tropaeolum majus L. J Ethnopharmacol 2011 Mar 24; 134(2):210-5.Kosík O, Garajová S, Matulová M, et al.
Effect of the label of oligosaccharide acceptors on the kinetic parameters of nasturtium seed xyloglucan endotransglycosylase (XET). Carbohydr Res 2011 Feb 1; 346(2):357-61.
Koriem KM, Arbid MS, El-Gendy NF The protective role of Tropaeolum majus on blood and liver toxicity induced by diethyl maleate in rats.Toxicol Mech Methods 2010 Nov; 20(9):579-86.
Oost-Indische kers en mierikswortel voorkomen blaasinfecties
Een fase-3-studie bewijst dat een supplement met Oost-Indische kers en mierikswortel het optreden van blaasinfecties vermindert bij mannen en vrouwen die er regelmatig last van hebben. De studie was van hoge kwaliteit: 350 deelnemers werden opgetrommeld en twee dosissen werden uitgetest: 3 x 2 tabletten versus 2 x 2 tabletten plus 2 x 1 placebo versus 3 x 2 placebotabletten. De hoogste dosis had het sterkste effect, wat sterk in het voordeel van de behandeling spreekt.
De studie werd uitgevoerd bij volwassen tussen 18 en 75 jaar, de onderzoekers onthouden zich dus van enige uitspraak omtrent eventuele doeltreffendheid bij kinderen. Terugkerende blaas- en urineweginfecties vragen om een profylactische benadering, en meestal gebeurt dat met behulp van antibiotica. Maar die geraken op den duur uitgewerkt omdat bacteriën snel resistentie ertegen ontwikkelen.
De studie maakte gebruik van commerciële tabletten die 200 mg poeder van Oost-Indische kers (blad) en 80 mg mierikswortelpoeder bevatten.
Fintelmann V, Albrecht U et al. Efficacy and safety of a combination herbal medicinal product containing Tropaeoli majoris herba and Armoraciae rusticanae radix for the prophylactic treatment of patients with respiratory tract diseases: a randomised, prospective, double-blind, placebo-controlled phase III trial. Curr Med Res Opin. 2012 Nov;28(11):1799-807J
Natriuretic and diuretic effects of Tropaeolum majus (Tropaeolaceae) in rats. Ethnopharmacol. 2009 Apr 21;122(3):517-22. doi: 10.1016/j.jep.2009.01.021. Epub 2009 Feb 7.
Gasparotto A Jr1, Boffo MA, Lourenço EL, Stefanello ME, Kassuya CA, Marques MC.
Tropaeolum majus L. (Tropaeolaceae), popularly known as "chaguinha", is well recognized in Brazilian traditional medicine as diuretic agent, although no scientific data have been published to support this effect.
AIM OF THE STUDY:
To evaluate the diuretic activity of the infusion and the hydroethanolic extract (HETM) of Tropaeolum majus, and possible mechanism of action.
MATERIAL AND METHODS:
The infusions (2,5 - 10%) and the HETM doses (150, 300 mg/kg) were orally administered to rats. Urinary excretion, the electrolytes levels, and urea and creatinine were measured in of saline-loaded rats.
RESULTS:
The oral administration of 10% (corresponding to 500 mg/kg) of the infusion increased significantly the urinary Na(+) excretion. Only the oral administration of 300 mg/kg of HETM increased significantly the urinary and Na(+) excretion. Prolonged administration of the HETM (300 mg/kg) significantly increased diuresis and the urinary excretion of Na(+), but others parameters were unaffected. To gain some evidence in possible involvement of prostaglandins system in diuretic action, the oral administration of HETM (300 mg/kg) in association indomethacin (5mg/kg) reduced the urinary and sodium excretion when compared only HETM group.
CONCLUSION:
The results suggest that HETM could present compound(s) responsible for diuretic activities with no signs of toxicity, and the mechanism could involve prostaglandin system.
Toxicol Mech Methods. 2010 Nov;20(9):579-86. doi: 10.3109/15376516.2010.518171. The protective role of Tropaeolum majus on blood and liver toxicity induced by diethyl maleate in rats.
Koriem KM1, Arbid MS, El-Gendy NF.
The protective role of Tropaelum majus (T.majus) methyl alcohol extract and vitamin E in the case of toxic effect induced by diethyl maleate was evaluated. Forty-two male albino rats were divided into seven groups of six rats each for 15 days. Group 1: normal control group. Group 2: taken daily oral dose of paraffin oil (0.25ml/100g b.wt rat). Group 3: received daily oral dose of vitamin E (100mg/kg b.wt rat). Group 4: taken daily oral dose of 10% of the LD50 of T.majus methyl alcohol extract. Groups 5–7: injected intra-peritoneally with diethyl maleate (5 μl/100g b.wt rat) but groups 6 and 7 received a daily oral dose of either vitamin E or 10% of the LD50 of T.majus methyl alcohol extract 1h prior to diethyl maleate injection. The present results revealed that diethyl maleate induced serum aspartate and alanine aminotransferases enzymes activities decreased in serum, but their activities in the hepatic tissue showed an increase. Glutathione and glucose-6-phosphate dehydrogenase levels showed a decrease, but thiobarbituric acid reactive substances level showed an increase in both serum and liver tissue. Serum and liver proteins decreased in serum and liver tissue. A significant decrease in blood parameters (hemoglobin, hematocrit, as well as red and white blood cells) and serum glucose occurred. Histopathological results showed that diethyl maleate induced a hoop of edema in the hepatic periportal area; while T.majus methyl alcohol extract or vitamin E prior to diethyl maleate injection shift blood and liver toxicity induced by diethyl maleate towards normal values and preserved hepatic lobular architecture. In conclusion, pre-treatment with either T.majus methyl alcohol extract or vitamin E provide protection against blood and liver toxicity induced by diethyl maleate in rats, these results were confirmed by histological examinations.
Flowers and Leaves of Tropaeolum majus L. as Rich Sources of Lutein. P.Y. Niizu,Delia B. Rodriguez-Amaya
First published: November 2005Full publication history
ABSTRACT: As increasing evidence supports the role of lutein and zeaxanthin in reducing the risk of cataract and macular degeneration, food sources of these carotenoids are being sought. In the present study, the lutein content of the edible flowers and leaves of Tropaeolum majus L. was determined by high-performance liquid chromatography-photodiode array detector (HPLC-PDAD), complemented by HPLC-mass spectrometry (MS) for identification. Chemical reactions were also used as identifying parameters. The yellow and brownish orange flowers had 450 ± 60 μg/g and 350 ± 50 μg/g lutein, respectively. Violaxanthin, antheraxanthin, zeaxanthin, zeinoxanthin, β-cryptoxanthin, α-carotene, and β-carotene were also detected at very low levels. The leaves had 136 ± 18 μg/g lutein, 69 ± 7 μg/g β-carotene, 74 ± 23 μg/g violaxanthin, and 48 ± 13 μg/g neoxanthin. Lutein was partly esterified in the flowers and unesterified in the leaves. The flowers of T. majus are therefore excellent food sources of lutein and the leaves good sources of both lutein and the provitamin A β-carotene.
Traditional usages, botany, phytochemistry, biological activity and toxicology of Tropaeolum majus L. - A review
Article (PDF Available) in Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas 15(4) · July 2016 with 38 Reads
1st Juliana Calil Brondani2nd Camila Helena Ferreira Cuelh3rd Lucas Damo MarangoniLast Melania Manfron
Tropaeolum majus presents medicinal, nutritional and ornamental value. Plant extracts and fractions have been found to exhibit diuretic, antihypertensive, anti-inflammatory, antimicrobial and antioxidant activities. Moreover, protective effects on blood and liver, scurvy’s treatment, antithrombin activity and prevention against macular degeneration have also been observed. T. majus contains biologically active compounds such as flavonoids, glucosilonates, fatty acids, essential oil, chlorogenic acid, aminoacids, cucurbitacins, proteins and carotenoids. Acute and subchronic studies demonstrated a lack of toxic effects, but the extracts of this plant can have deleterious consequences during the pregnancy. The revised databases were SciELO, PubMed, ScienceDirect and Portal da Capes, considering studies between 1963 and 2014 and by searching for terms like Tropaeolum majus, Tropaeolaceae, Tropaeolum majus constituents, Tropaeolum majus use and Tropaeolum majus toxicity
Antimicrobial activity Benzyl isothiocyanates are recognized as potential antimicrobial agents (Masuda et al., 2009; Jang et al., 2010; Sofrata et al., 2011; Dufour et al., 2012). Bazylko et al., tested the activity of T. majus’s herb extracts (aqueous and hydroethanolic) against Staphylococcus aureus, Bacilus subtilis, Micrococcus luteus, Escherichia coli, Pseudomonas aeruginosa and Bordetella bronchiseptica. No antimicrobial activity was detected and the authors correlate it to the low content of benzyl isothiocyanate in the extracts (Bazylko et al., 2013). On the other hand, the antimicrobial activity of the fractions of the ethanolic extract of T. majus were determined by bioautography using Gram-positive and Gram-negative bacteria, besides amoxicillin as positive control. As a result, the hexane and chloroform fractions presented inhibition zones for all microorganisms tested (Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Salmonella setubal) (Zanetti et al., 2003).
Antioxidant activity Some studies have studied the antioxidant action of T. majus (Machado, 2008; Bazylko et al., 2013; Vieira, 2013). From the orange flowers, Garzón and Wrolstad (2009), tested the antioxidant capacity of T. majus determining the ABTS radical cation scavenging activity, through the method described by Re et al. (1999), and the DPPH free radical scavenging activity according to the method described by Hsu et al. (2006). The results showed that T. majus's orange flowers were able extinguish the radicals ABTS and DPPH, with the ABTS radical scavenging activity being higher than the DPPH radical scavenging activity (Re et al., 1999; Hsu et al., 2006; Garzón & Wrolstad, 2009). Bazylko et al. (2014), determined the antioxidant activity of T. majus by analyzing the aqueous and hydroethanolic extracts of the leaves and flowers and the fresh herb juice through the DPPH radical scavenging activity, and the evaluation of ROS production in cellular model by chemiluminescence and oxidation of human neutrophils. The tested extracts and juice had a low DPPH scavenging activity at a concentration of 100 µg/mL, being 24.1%, 37.5% and 34.7% for the aqueous extract, hydroethanolic extract and juice, respectively. About ROS generation, the extracts showed stronger antioxidant activity against H2O2 and O2-, while the juice presented significant activity only against O2-. In the ex vivo model of human neutrophils oxidation, the hydroethanolic extract showed a stronger inhibition of ROS production, and the aqueous extract showed weaker inhibitory action. However, the weakest activity was observed with the juice (Bazylko et al., 2014).
Antihypertensive action Gasparotto et al. (2011b), tested the antihypertensive effects of isoquercitrin, hydroethanolic extracts of T. majus (HETM) and the semi-purified fraction (TMLR). After 1.5 hours of the oral treatment with HETM 10 and 300 mg/kg, the basal mean arterial pressure (MAP) in normotensive rats was reduced in ~13 mm Hg, in a dose and time-dependent manner. Similary, the oral administration of TMLR 12.5 and 100 mg/kg caused hypotensive effects, with reduction values of 17.94 and 20.77 mm Hg, respectively. However, none of the treatments were able to reduce the heart rate. Analyzing the hypotensive effects of isoquercitrin in normotensive rats, the study showed that the intravenous administration of isoquercitrin (0.5 - 4 mg/kg) was able to cause a reduction in MAP (dose-dependent manner), with minor influences on heart rate. The intraduodenal treatment, with TMLR (50 mg/kg) and HETM (100 mg/kg), presented antihypertensive and hypotensive effects, with MAP reduction of 18.77 and 14.14 mm Hg for SHR and WKY rats, respectively (Gasparotto et al., 2011b). Regarding the measurement of serum angiotensin converting enzyme (ACE), the oral administrations of HETM (0 - 300 mg/kg), TMLR (25 - 100 mg/kg) and isoquercitrin (5 - 10 mg/kg) were able to reduce the serum activity of ACE by 20% and 24% at 100 and 300 mg/kg of HETM, respectively. Rats treated with TMRL at 50 and 100 mg/kg exhibited a reduction in ACE activity of 28% and 30%, respectively. Futhermore, the study showed that the intravenous administration of isoquercitrin (4 mg/kg) caused a 34% reduction in the hypertensive response of angiotensin I in normotensive rats and had no significant effect in the hypotensive effects of bradykinin. The authors state that the reduction in blood pressure cannot be directly related to any cardiac effect since the hypotension which was verified after the treatments with HETM and TMLR, was not followed by significant reduction in the heart rate of the animals tested. Also, they hypothesize that the hypotensive effect could be related to the isoquercitrin present in T. majus (Gasparotto et al., 2011b).
Diuretic effect and its mechanisms Several studies, both in vitro and in vivo, have demonstrated the diuretic action of T. majus (Binet, 1964; Goos et al., 2006; Barboza et al., 2014). Gasparotto et al. (2011a), tested the diuretic effect of the semi-purified fraction obtained from hydroethanolic extract (TMLR) of T. majus’s leaves and its component, the flavonoid isoquercitrin. The treatment with a single dose of the TMRL (100 mg/kg) significantly increased diuresis after 6, 8, 15 and 24 hours. The total volume of urine measured at 6 and 24 hours in TMRL-treated animals were 2.22 mL and 3.97 mL, respectively, while the urinary output in the control group, at the same times, were 1.02 mL and 2.53 mL, respectively. The single administration of isoquercitrin (10 mg/kg) also increased diuresis when compared to the control group. The volume of urine, after 4 hours, was 1.63 mL in the isoquercitrin group versus 0.85 mL in the control group (Gasparotto et al., 2011a) The effects of acute treatments with hydrochlorothiazide (HCTZ), TMRL (100 mg/kg) and isoquercitrin (10 mg/kg) on electrolyte levels were also evaluated. All tested substances increased the excretion of the Na+, however, only the HCTZ group presented high amounts of K+ in the urine. The consequence of longer treatment times was also studied, the daily administration of TMLR (100 mg/kg) and isoquercitrin (10 mg/kg) for 7 days significantly increased diuresis after the first day of treatments, such that the cumulative urinary flow increased from 2.53 mL in control animals to 3.97 mL and 4.58 mL in rats treated with TMLR and isoquercitrin, respectively. Moreover, the Na+ excretion in urine was increased in both treatments at days 1, 5, 6 and 7, but K+ levels remained unchanged. The hydrochlorothiazide group significantly increased the K+ urinary excretion. The authors attribute the diuretic activity mainly due the presence of isoquercitrin in the TMRL fraction (Gasparotto et al., 2011a). Another work from the same research group tested the diuretic effect after the oral administration of the ethanolic extract of T. majus's leaves (HETM), its purified fraction (TMLR) and isoquercitrin (ISQ), comparing the results with drugs well known as diuretics (furosemide/FURO, hydrochlorothia-zide/HCTZ, acetazolamide/ACTZ and spironolac-tone/SPIRO). The urinary output measured in HETM, TMLR and ISQ groups were similar to those found in ACTZ, SPIRO and FURO groups and slightly less than in HCTZ group. Compared to the extracts of T. majus (HETM and TMLR), the HCTZ treated animals presented higher amounts of Na+ in the urine. Both ACTZ and HCTZ treatments increased urinary excretion of K+ by, respectively, 72% and 88%. This parameter remained unchanged in animals treated with T. majus's extracts and ISQ groups. The urinary Cl- excretion was 12.48 mmol/l/15 h in the SPIRO group (50 mg/kg), 12.35 mmol/l/15 h in the TMLR group (100 mg/kg), 11.20 mmol/l/15 h in the HETM group (300 mg/kg) and 10.31 mmol/l/15 h for the group control. However, the measured values were quite different for FURO 10 mg/kg (26.33 mmol/l/15 h) and HCTZ 10 mg/kg (20.17 mmol/l/15 h) (Gasparotto et al., 2012). According to the authors, the general profile of the diuretic action indicates that the effect of T. majus extracts and ISQ are close to the one induced by spironolactone. They also attribute the diuretic effect to the inhibition of the angiotensin converter enzyme and subsequent increase in the bioavailability of bradykinin, PGI2 and nitric oxide. Also, an inhibitory effect on Na+/K+-ATPase may be related to the increased diuresis. Similar to spironolactone, the reduction in serum aldosterone, associated with hypotensive action, may increase hydrostatic pressure in renal arterioles, being responsible for the diuretic and natriuretic effects observed. Low amounts of potassium and/or other metals were observed in T. majus, a fact that led the authors to discard the possibility that an osmotic mechanism could be related to the diuretic effect (Gasparotto et al., 2012).
Other actions Protective effects on the blood and livers of rats against diethyl maleate toxicity, treatment of scurvy, antithrombin activity and prevention against macular degeneration were observed because of the carotenoids found in the plant (Niizu & Rodriguez-Amaya, 2005; Santo et al., 2007; Koriem et al., 2010). In the hormonal system, the hydroethanolic extract obtained from T. majus’s leaves does not affect the ex vivo uterine contractility of pregnant rats induced by oxytocin or arachidonic acid. Moreover, it has a lack of in vivo estrogenic or anti-estrogenic activity, indicating that T. majus does not modulate estrogen responses in vivo and has no influence on uterine contractility. It is also unable to elicit androgenic activities, block the effects of testosterone on androgen-sensitive tissues such as prostate, seminal vesicle, glans penis and levator ani/bulbocavernosus muscle (Lourenço et al., 2012). Also, from aqueous and hydroethanolic extracts of T. majus, Bazylko et al. (2013), examined the potential anti-inflammatory activity, and evaluated the inhibition of cyclooxygenase 1 (COX1) and hyaluronidase. All extracts showed inhibition of cyclooxygenase 1 activity, with the extracts from freeze-dried herbs exhibiting strong action at a concentration of 50 µg/mL an effect comparable to that of 2 µM indomethacin. However, none of the extracts acted as inhibitors of hyaluronidase (Bazylko et al., 2013).
The oil produced by the seeds, known worldwide as Lorenzo's oil, is used to treat a severe and degenerative disease called adrenoleukodystrophy (Carlson & Kleiman, 1993).
Flavonoids Several flavonoids have been isolated from T. majus. Koriem et al analyzed the flavonoids present in the leaves and flowers of T. majus’s methyl alcohol extract with liquid chromatography/mass spectra (LC/MS). The results showed a greater amount of a kaempferol glucoside (9.40 mg/100 mL extract), followed by isoquercitroside (2.25 mg/100 mL extract) and quercetol 3-triglucoside (1.17 mg/100 mL extract) (Koriem et al., 2010). Using electrospray ionization-mass spectrometry (ESI-MS) and high performance liquid chromatography (HPLC-UV) to analyze the leaf extracts, Gasparotto et al. (2011a) obtained, as the major components of the fraction eluted with water and ethanol, isoquercitrin and kaempferol glucoside (Gasparotto et al., 2011a). Bazylko et al. (2013), demonstrated the presence of quercetin-3-O-glucoside (isoquercitrin) and kaempferol-3-O-glucoside (astragalin) in the aqueous extract of the T. majus’s herb. Also, the presence of quercetin and kaempferol derivatives were detected (Bazylko et al., 2013). In another work from the same research group, a higher content of flavonoids was identified in the hydroethanolic extract and aqueous extract of leaves and flowers (26.0 mg/g and 15.2 mg/g, respectively), follwed by the herb juice (11.2 mg/g). In a similar pattern, the content of total phenols was 35.6 mg/g in the hydroethanolic extract and 29.5 mg/g in the aqueous extract, followed by herb juice (19.5 mg/g) (Bazylko et al., 2014).
Isoquercitrin is a natural flavonoid glucoside, quercetin analog, that has been found to have a wide range of biological properties (Razavi et al., 2009), such as diuretic effect; anti-inflammatory action; antioxidant activity, decreasing ROS levels; reducing capability of lipid peroxidation and inhibition of adipocyte differentiation (Rogerio et al., 2007; Gasparotto et al., 2011a; Li et al., 2011; Lee et al., 2011). Lipid peroxidation is a chain reaction of the polyunsaturated fatty acids of cell membranes, which undergo alterations in permeability, fluidity and integrity due to production of free radicals. These damaged cells are predisposed to well known comorbidities, such as systemic arterial hypertension, dyslipidemia, thromboembolic events, diabetes mellitus and cancer (Mahattanatawee et al., 2006). Many flavonoids are antioxidants, hence some of the compounds found in T. majus may act to prevent cell degeneration (Bohm et al., 1998). For example, kaempferol acts as a proton radical scavenger (DPPH scavenging assay), hydroxyl radical scavenger (deoxyribose degradation assay) and metal chelating agent (Singh et al., 2008).
Glucosilonates Glucosilonates are hydrophilic compounds that are chemically and thermally stable. Its hydrolysis occurs due to an enzymatic reaction mediated by endogenous enzyme myrosinase (ß-thioglucosidase). This enzyme occurs in plants containing glucosilonates, but in separate compartments. When the tissue gets damaged, e.g. by the action of fungi, chewing or cutting, the glucosilonates are put in contact with myrosinase, thereby releasing benzyl isothiocyanate (Bones & Rossiter, 1996). The main glucosilonates found in T. majus are glucotropaeolin (Figure 1) and sinalbin. Koriem et al obtained both constituents from the leaves and flowers of T. majus’s methyl alcohol extract (1.65 mg of glucotropaeolin/100 mL extract and 12.54 mg of sinalbin/100 mL extract) (Koriem et al., 2010). Using HPLC method, Bazylko et al. (2013) also showed the presence of glucotropaeolin in T. majus's hydroethanolic extract obtained at 90° C (Bazylko et al., 2013). Interesting, in another work from the same group, the analysis showed a lack of glucotropaeolin in the aqueous extract and juice. Moreover, only traces of glucotropaeolin in the hydroethanolic extract were observed (Bazylko et al., 2014). Koriem et al. (2010), dosed benzyl isothiocyanate in the methyl alcohol extract of T. majus’s leaves and flowers, founding 20.24 mg/100 mL extract (Koriem et al., 2010). Benzyl isothiocyanate has important physiological roles. It stimulates the chemo-protective mechanisms, but, depending on its concentration, can also induce cellular stress. Act as inducers of phase 2 enzymes of detoxification mechanism and inhibit phase 1 enzymes, thereby accentuating the cell performance in chemical detoxification. In vitro studies have also shown antimicrobial and anthelmintic activities. Moreover, it has an important anticancer function, increasing the occurrence of apoptosis of cancer cells (Kermanshai et al., 2001; D`agostini et al., 2005; Morant et al., 2008; Volden et al., 2008; Sofrata et al., 2011).
Fatty acids Koriem et al. (2010), dosed the fatty acids content in the leaves and flowers of T. majus’s methyl alcohol extract through liquid chromatography/mass spectra (LC/MS). The phytochemical screening showed a higher concentration of linoleic acid (1.18 mg/100 mL extract), followed by oleic acid (0.71 mg/100 mL extract) and erucic acid (0.22 mg/100 mL extract) (Koriem et al., 2010). The essential fatty acids, oleic and linoleic, have important functions to the organism. They can help to prevent heart disease, decrease blood clotting, suppress cancer formation, suppress a wide range of allergic mediators, and exert neuroprotective action, among others (Chin et al., 1992; Bemelmans et al., 2002; Martínez-González & Bes-Rastrollo, 2006). Oleic acid is called as an omega 9 acid. It participates in the human metabolism, as an antioxidant and playing fundamental role in the synthesis of hormones (Bressan et al., 2009). Also, linoleic acid, called as an omega 6 acid. It is a precursor of arachidonic acid, having important role in the production of a series of lipid mediators, the eicosanoids, which are synthesized through the arachidonic acid cascade (James et al., 2000). It is necessary to keep cell membranes, brain functions and the transmission of nerve impulses under normal conditions.These fatty acids are known to participate in the transfer of atmospheric oxygen to blood plasma, the cell division and the synthesis of hemoglobin (Youdim et al., 2000).
Other constituents In addition to the compounds already mentioned above, other components of T. majus have been reported, including carotenoids, terpenoids, ascorbic acid, anthocyanins, esters of quinic acid with cinnamic acids (chlorogenic acids and p-coumaroylquinic acids), sugar and minerals (Harbone, 1963; Ferri et al., 1981; Niizu & Rodriguez-Amaya, 2005; Garzón & Wrolstad, 2009; Bazylko et al., 2013).