Tropaeolum majus / Oost-Indische kers

Oost-Indische kers.

Zoals de naam al aangeeft, komt deze tuinplant uit de tropen en dat blijkt ook wel uit de vurige kleuren en de enorme licht- en warmte­kracht die zij uitstraalt. De officiële botanische naam is Tropaeolum majus, wat zoveel als trofee betekent. De naamgevers hebben zich daarbij laten inspireren door het Griekse verleden. De Grieken namen altijd trofeeën mee naar het vaderland als de strijd gestreden was. Bovendien lijken de bladeren wel wat op schilden en de bloemen met hun lange sporen hebben veel weg van de helmen die de krijgers op het hoofd droegen.

De Oost-Indische kers is een plant die kracht geeft aan wie zich moe en uitgeput voelt. De  Romeinse geneesheer Plinius beweerde reeds dat een lui of moe mens deze plant moest eten om hem uit zijn traagheid te wekken. Het typische van deze plant is inderdaad de grote inwendige warmte. Deze zetelt chemisch gezien in de benzyl-mosterd-olie, die ook de scherpe smaak geeft. Zowel de zaden als de bloemen en bladeren bezitten dezelfde pittigheid. De smaak van de bladeren komt goed tot hun recht in soepen en salades. De fijngehakte jonge bladeren vormen een pittige toevoeging aan salades. De scherpe mosterd-olie werkt als een antibioticum op ongewenste bacteriën, schimmels en virussen. Kauwen op een vers blad ontsmet mond en keel. Volgens een Griekse sage zou de Oost-Indische kers de metamorfose zijn van een jager. Met de zaden van deze plant zou men volgens het volksgeloof slangen kunnen verjagen. De bloemen zouden 's nachts licht geven. Al heb ik daar persoonlijk nog niks van gemerkt. 

Recept: Oost indische kers pesto

Ingrediënten: 2  handenvol blad van de Oost Indische kers, 1 handje verse walnoten, scheutje olijfolie/ peper en zout naar smaak/ eventueel wat geraspte oude kaas of Parmezaanse kaas

Hak de walnoten fijn in een kleine keukenmachine. hak vervolgens het blad fijn. Voeg gehakte walnoten, zout, peper en een scheutje olie toe, en de kaas indien je deze gebruikt, en hak weer tot het goed gemengd is. Voeg meer olie toe indien nodig totdat je een zachte, smeerbare consistentie hebt. Variatie met knoflook en pijnboompitten.

Recept: Groentesoep met Oost Indisch kersblad

Deze soep maak je van 2 aardappelen, een ui, een courgette en eventueel een wortel. Deze groenten fijnsnijden en fruiten in wat olie. Na zo’n 5 minuten voeg je een handvol Oost-Indische kers bladeren toe (15 à 20) en laat deze 5 minuten meestoven. Vervolgens een liter groentebouillon erbij en alles nog 10 minuten laten koken. Met de mixer pureren. Eventueel nog wat zout en peper toevoegen en vers gesnipperd kersblad en bloem.

Groene onrijpe zaden zijn zo eetbaar. Ze hebben van de hele plant de meest uitgesproken smaak. Door ze in zuur te conserveren krijg je een soort kappertjes. Om deze “kappertjes” te maken pluk je de nog groene zaden. Wassen, bestrooien met zout en ze een nachtje laten staan. De volgende dag de zaden afspoelen en goed laten drogen in het zonnetje. De zaden samen met wat kruiderij , zoals gember, knoflook, koriander en peper, in een bokaal doen. Deze pot dan vullen met 6 delen azijn en 1 deel suikeroplossing. Een maand op een koele plaats laten staan 

Medicinal Uses vlgs Pfaff Database

Antibacterial; Antibiotic; Antifungal; Antiseptic; Aperient; Depurative; Diuretic; Emmenagogue; Expectorant; Laxative; Stimulant.

Nasturtium has long been used in Andean herbal medicine as a disinfectant and wound-healing herb, and as an expectorant to relieve chest conditions[254]. All parts of the plant appear to be antibiotic and an infusion of the leaves can be used to increase resistance to bacterial infections and to clear nasal and bronchial catarrh[254]. The remedy seems to both reduce catarrh formation and stimulate the clearing and coughing up of phlegm[254]. 

The leaves are antibacterial, antifungal, antiseptic, aperient, depurative, diuretic, emmenagogue, expectorant, laxative and stimulant[7, 21, 238]. A glycoside found in the plant reacts with water to produce an antibiotic[238]. The plant has antibiotic properties towards aerobic spore forming bacteria[61]. Extracts from the plant have anticancer activity[218]. The plant is taken internally in the treatment of genito-urinary diseases, respiratory infections, scurvy and poor skin and hair conditions[238]. Externally it makes an effective antiseptic wash and is used in the treatment of baldness, minor injuries and skin eruptions[238]. Any part of the plant can be used, it is harvested during the growing season and used fresh[238].

Other Uses

Insecticide; Oil; Repellent.

The seeds yield a high percentage of a drying oil that can be used in making paints, varnish etc[7]. 

The growing plant attracts aphids away from other plants. Research indicates that aphids flying over plants with orange or yellow flowers do not stop, nor do they prey on plants growing next to or above the flowers[201]. 

An insecticide can be made from an infusion of leaves and soap flakes[201].

Uit Afbeeldingen der artseny-gewassen met derzelver Nederduitsche en Latynsche beschryvingen 1796-1813 in zeven delen Plaat 314

Gebruik. Oostindische Kers, klimmende Indische Viool zijn nog als benaamingen van deeze Plant bekend. Bloem en Bladen hebben eene aangenaame scherpe Smaak en worden uit dien hoofde als Kruidenaarijen in het huishoudelijke gebruikt. Het Zaad in Azijn bewaard is niet onaangenaam. Schoon de Plant niet regtstreeks als Artsenij-middel gebruikt word, zo heeft zij met dit al een Urin-drijvend en Scheurbuik tegenwerkend vermogen, en zoude als zodanig bij gebrek van andere Middelen kunnen gebruikt worden. Ook zullen de Vrugten zo wel droog, als versch zeer zagt purgeeren.

Wetenschappelijk onderzoek

Oost-Indische kers en mierikswortel voorkomen blaasinfecties

Een fase-3-studie bewijst dat een supplement met Oost-Indische kers en mierikswortel het optreden van blaasinfecties vermindert bij mannen en vrouwen die er regelmatig last van hebben. De studie was van hoge kwaliteit: 350 deelnemers werden opgetrommeld en twee dosissen werden uitgetest: 3 x 2 tabletten versus 2 x 2 tabletten plus 2 x 1 placebo versus 3 x 2 placebotabletten. De hoogste dosis had het sterkste effect, wat sterk in het voordeel van de behandeling spreekt.

De studie werd uitgevoerd bij volwassen tussen 18 en 75 jaar, de onderzoekers onthouden zich dus van enige uitspraak omtrent eventuele doeltreffendheid bij kinderen. Terugkerende blaas- en urineweginfecties vragen om een profylactische benadering, en meestal gebeurt dat met behulp van antibiotica. Maar die geraken op den duur uitgewerkt omdat bacteriën snel resistentie ertegen ontwikkelen.

De studie maakte gebruik van commerciële tabletten die 200 mg poeder van Oost-Indische kers (blad) en 80 mg mierikswortelpoeder bevatten.

Fintelmann V, Albrecht U et al. Efficacy and safety of a combination herbal medicinal product containing Tropaeoli majoris herba and Armoraciae rusticanae radix for the prophylactic treatment of patients with respiratory tract diseases: a randomised, prospective, double-blind, placebo-controlled phase III trial. Curr Med Res Opin. 2012 Nov;28(11):1799-807

Natriuretic and diuretic effects of Tropaeolum majus (Tropaeolaceae) in rats. Ethnopharmacol. 2009 Apr 21;122(3):517-22. doi: 10.1016/j.jep.2009.01.021. Epub 2009 Feb 7.

Gasparotto A Jr1, Boffo MA, Lourenço EL, Stefanello ME, Kassuya CA, Marques MC.

Tropaeolum majus L. (Tropaeolaceae), popularly known as "chaguinha", is well recognized in Brazilian traditional medicine as diuretic agent, although no scientific data have been published to support this effect.

AIM OF THE STUDY:

To evaluate the diuretic activity of the infusion and the hydroethanolic extract (HETM) of Tropaeolum majus, and possible mechanism of action.

MATERIAL AND METHODS:

The infusions (2,5 - 10%) and the HETM doses (150, 300 mg/kg) were orally administered to rats. Urinary excretion, the electrolytes levels, and urea and creatinine were measured in of saline-loaded rats.

RESULTS:

The oral administration of 10% (corresponding to 500 mg/kg) of the infusion increased significantly the urinary Na(+) excretion. Only the oral administration of 300 mg/kg of HETM increased significantly the urinary and Na(+) excretion. Prolonged administration of the HETM (300 mg/kg) significantly increased diuresis and the urinary excretion of Na(+), but others parameters were unaffected. To gain some evidence in possible involvement of prostaglandins system in diuretic action, the oral administration of HETM (300 mg/kg) in association indomethacin (5mg/kg) reduced the urinary and sodium excretion when compared only HETM group.

CONCLUSION:

The results suggest that HETM could present compound(s) responsible for diuretic activities with no signs of toxicity, and the mechanism could involve prostaglandin system.

Toxicol Mech Methods. 2010 Nov;20(9):579-86. doi: 10.3109/15376516.2010.518171. The protective role of Tropaeolum majus on blood and liver toxicity induced by diethyl maleate in rats.

Koriem KM1, Arbid MS, El-Gendy NF.

The protective role of Tropaelum majus (T.majus) methyl alcohol extract and vitamin E in the case of toxic effect induced by diethyl maleate was evaluated. Forty-two male albino rats were divided into seven groups of six rats each for 15 days. Group 1: normal control group. Group 2: taken daily oral dose of paraffin oil (0.25ml/100g b.wt rat). Group 3: received daily oral dose of vitamin E (100mg/kg b.wt rat). Group 4: taken daily oral dose of 10% of the LD50 of T.majus methyl alcohol extract. Groups 5–7: injected intra-peritoneally with diethyl maleate (5 μl/100g b.wt rat) but groups 6 and 7 received a daily oral dose of either vitamin E or 10% of the LD50 of T.majus methyl alcohol extract 1h prior to diethyl maleate injection. The present results revealed that diethyl maleate induced serum aspartate and alanine aminotransferases enzymes activities decreased in serum, but their activities in the hepatic tissue showed an increase. Glutathione and glucose-6-phosphate dehydrogenase levels showed a decrease, but thiobarbituric acid reactive substances level showed an increase in both serum and liver tissue. Serum and liver proteins decreased in serum and liver tissue. A significant decrease in blood parameters (hemoglobin, hematocrit, as well as red and white blood cells) and serum glucose occurred. Histopathological results showed that diethyl maleate induced a hoop of edema in the hepatic periportal area; while T.majus methyl alcohol extract or vitamin E prior to diethyl maleate injection shift blood and liver toxicity induced by diethyl maleate towards normal values and preserved hepatic lobular architecture. In conclusion, pre-treatment with either T.majus methyl alcohol extract or vitamin E provide protection against blood and liver toxicity induced by diethyl maleate in rats, these results were confirmed by histological examinations.

Flowers and Leaves of Tropaeolum majus L. as Rich Sources of Lutein. P.Y. Niizu,Delia B. Rodriguez-Amaya

First published: November 2005Full publication history

ABSTRACT: As increasing evidence supports the role of lutein and zeaxanthin in reducing the risk of cataract and macular degeneration, food sources of these carotenoids are being sought. In the present study, the lutein content of the edible flowers and leaves of Tropaeolum majus L. was determined by high-performance liquid chromatography-photodiode array detector (HPLC-PDAD), complemented by HPLC-mass spectrometry (MS) for identification. Chemical reactions were also used as identifying parameters. The yellow and brownish orange flowers had 450 ± 60 μg/g and 350 ± 50 μg/g lutein, respectively. Violaxanthin, antheraxanthin, zeaxanthin, zeinoxanthin, β-cryptoxanthin, α-carotene, and β-carotene were also detected at very low levels. The leaves had 136 ± 18 μg/g lutein, 69 ± 7 μg/g β-carotene, 74 ± 23 μg/g violaxanthin, and 48 ± 13 μg/g neoxanthin. Lutein was partly esterified in the flowers and unesterified in the leaves. The flowers of T. majus are therefore excellent food sources of lutein and the leaves good sources of both lutein and the provitamin A β-carotene.


Traditional usages, botany, phytochemistry, biological activity and toxicology of Tropaeolum majus L. - A review

Article (PDF Available) in Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas 15(4) · July 2016 with 38 Reads

1st Juliana Calil Brondani2nd Camila Helena Ferreira Cuelh3rd Lucas Damo MarangoniLast Melania Manfron

Tropaeolum majus presents medicinal, nutritional and ornamental value. Plant extracts and fractions have been found to exhibit diuretic, antihypertensive, anti-inflammatory, antimicrobial and antioxidant activities. Moreover, protective effects on blood and liver, scurvy’s treatment, antithrombin activity and prevention against macular degeneration have also been observed. T. majus contains biologically active compounds such as flavonoids, glucosilonates, fatty acids, essential oil, chlorogenic acid, aminoacids, cucurbitacins, proteins and carotenoids. Acute and subchronic studies demonstrated a lack of toxic effects, but the extracts of this plant can have deleterious consequences during the pregnancy. The revised databases were SciELO, PubMed, ScienceDirect and Portal da Capes, considering studies between 1963 and 2014 and by searching for terms like Tropaeolum majus, Tropaeolaceae, Tropaeolum majus constituents, Tropaeolum majus use and Tropaeolum majus toxicity

Antimicrobial activity Benzyl  isothiocyanates  are  recognized  as  potential antimicrobial agents (Masuda et al., 2009; Jang et al., 2010;  Sofrata  et  al.,  2011;  Dufour  et  al.,  2012). Bazylko et al., tested the activity of T. majus’s herb extracts  (aqueous  and  hydroethanolic)  against Staphylococcus aureus, Bacilus subtilis, Micrococcus luteus,  Escherichia  coli,  Pseudomonas  aeruginosa and  Bordetella  bronchiseptica.  No  antimicrobial activity was detected and the authors correlate it to the  low  content  of  benzyl  isothiocyanate  in  the extracts (Bazylko et al., 2013). On the other hand, the antimicrobial activity of the fractions of  the ethanolic extract of  T.  majus were  determined  by  bioautography  using  Gram-positive  and  Gram-negative  bacteria,  besides amoxicillin  as  positive  control.  As  a  result,  the hexane and chloroform fractions presented inhibition zones for all microorganisms tested (Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Klebsiella  pneumoniae  and  Salmonella  setubal) (Zanetti et al., 2003).

Antioxidant activity Some studies have studied the antioxidant action of T. majus (Machado, 2008; Bazylko et al., 2013; Vieira, 2013).  From  the  orange  flowers,  Garzón  and Wrolstad (2009), tested the antioxidant capacity of T. majus  determining  the  ABTS  radical  cation scavenging activity, through the method described by Re  et  al.  (1999),  and  the  DPPH  free  radical scavenging  activity  according  to  the  method described by Hsu et al. (2006). The results showed that T. majus's orange flowers were able extinguish the radicals ABTS and DPPH, with the ABTS radical scavenging  activity  being  higher  than  the  DPPH radical scavenging  activity (Re  et al., 1999; Hsu et al., 2006; Garzón & Wrolstad, 2009). Bazylko  et  al.  (2014),  determined  the antioxidant  activity  of  T.  majus  by  analyzing  the aqueous and hydroethanolic extracts of the leaves and flowers and  the fresh herb juice through  the DPPH radical  scavenging  activity,  and  the  evaluation  of ROS  production  in  cellular  model  by chemiluminescence  and  oxidation  of  human neutrophils. The tested extracts and juice had a low DPPH scavenging activity at a concentration of 100 µg/mL,  being  24.1%,  37.5%  and  34.7%  for  the aqueous  extract,  hydroethanolic  extract  and  juice, respectively.  About  ROS  generation,  the  extracts showed  stronger  antioxidant  activity  against  H2O2 and O2-, while the juice presented significant activity only  against  O2-.  In  the  ex  vivo  model  of  human neutrophils  oxidation,  the  hydroethanolic  extract showed a stronger inhibition of ROS production, and the aqueous extract showed weaker inhibitory action. However, the weakest activity was observed with the juice (Bazylko et al., 2014).

Antihypertensive action Gasparotto et al. (2011b), tested the antihypertensive effects of isoquercitrin, hydroethanolic extracts of T. majus  (HETM)  and  the  semi-purified  fraction (TMLR). After 1.5 hours of the oral treatment with HETM  10  and  300  mg/kg,  the  basal  mean  arterial pressure (MAP) in normotensive rats was reduced in ~13 mm Hg, in a dose and time-dependent manner. Similary, the oral administration of TMLR 12.5 and 100 mg/kg caused hypotensive effects, with reduction values  of  17.94  and  20.77  mm  Hg,  respectively. However, none of the treatments were able to reduce the heart rate. Analyzing  the hypotensive  effects of isoquercitrin in normotensive rats, the study showed that  the  intravenous  administration  of  isoquercitrin (0.5 - 4 mg/kg) was able to cause a reduction in MAP (dose-dependent manner),  with  minor influences  on heart rate. The intraduodenal treatment, with TMLR (50  mg/kg)  and  HETM  (100  mg/kg),  presented antihypertensive and hypotensive effects, with MAP reduction of 18.77 and 14.14 mm Hg for SHR and WKY rats, respectively (Gasparotto et al., 2011b). Regarding  the  measurement  of  serum angiotensin  converting  enzyme  (ACE),  the  oral administrations  of  HETM  (0  -  300  mg/kg),  TMLR (25  -  100  mg/kg)  and  isoquercitrin  (5  -  10  mg/kg) were  able  to  reduce  the  serum  activity  of  ACE  by 20%  and  24%  at  100  and  300  mg/kg  of  HETM, respectively. Rats treated with TMRL at 50 and 100 mg/kg exhibited a reduction in ACE activity of 28% and 30%, respectively. Futhermore, the study showed that the intravenous administration of isoquercitrin (4 mg/kg) caused a 34% reduction in the hypertensive response  of  angiotensin  I  in  normotensive  rats  and had no significant effect in the hypotensive effects of bradykinin.  The  authors  state  that  the  reduction  in blood  pressure  cannot  be  directly  related  to  any cardiac  effect  since  the  hypotension  which  was verified after the treatments with HETM and TMLR, was not followed by significant reduction in the heart rate of the animals tested. Also, they hypothesize that the  hypotensive  effect  could  be  related  to  the isoquercitrin  present in  T. majus  (Gasparotto  et  al., 2011b).

Diuretic effect and its mechanisms Several  studies,  both  in  vitro  and  in  vivo,  have demonstrated the diuretic action of  T.  majus (Binet, 1964; Goos et al., 2006; Barboza et al., 2014). Gasparotto et al. (2011a), tested the diuretic effect  of  the  semi-purified  fraction  obtained  from hydroethanolic extract (TMLR) of T. majus’s leaves and  its  component,  the  flavonoid  isoquercitrin.  The treatment  with  a  single  dose  of  the  TMRL  (100 mg/kg) significantly increased diuresis after 6, 8, 15 and 24 hours. The total volume of urine measured at 6 and 24 hours in TMRL-treated animals were 2.22 mL  and  3.97  mL,  respectively,  while  the  urinary output in the control group, at the same times, were 1.02  mL  and  2.53  mL,  respectively.  The  single administration  of  isoquercitrin  (10  mg/kg)  also increased  diuresis  when  compared  to  the  control group. The volume of urine, after 4 hours, was 1.63 mL in the isoquercitrin group versus 0.85 mL in the control group (Gasparotto et al., 2011a) The  effects  of  acute  treatments  with hydrochlorothiazide  (HCTZ),  TMRL  (100  mg/kg) and  isoquercitrin  (10  mg/kg)  on  electrolyte  levels were also evaluated. All tested substances increased the excretion  of  the  Na+,  however,  only  the  HCTZ group presented high amounts of K+ in the urine. The consequence  of  longer  treatment  times  was  also studied,  the  daily  administration  of  TMLR  (100 mg/kg)  and  isoquercitrin  (10  mg/kg)  for  7  days significantly increased diuresis after the first day of treatments,  such  that  the  cumulative  urinary  flow increased  from  2.53  mL  in  control  animals  to  3.97 mL  and  4.58  mL  in  rats  treated  with  TMLR  and isoquercitrin,  respectively.  Moreover,  the  Na+ excretion in urine was increased in both treatments at days 1, 5, 6 and 7, but K+ levels remained unchanged. The  hydrochlorothiazide  group  significantly increased  the  K+  urinary  excretion.  The  authors attribute the diuretic activity mainly due the presence of isoquercitrin in the TMRL fraction (Gasparotto et al., 2011a). Another work from the same research group tested the diuretic effect after the oral administration of the ethanolic extract of T. majus's leaves (HETM), its purified fraction (TMLR) and isoquercitrin (ISQ), comparing  the  results  with  drugs  well  known  as diuretics  (furosemide/FURO,  hydrochlorothia-zide/HCTZ,  acetazolamide/ACTZ  and  spironolac-tone/SPIRO). The urinary output measured in HETM, TMLR and ISQ groups were similar to those found in ACTZ,  SPIRO  and  FURO  groups  and  slightly  less than in HCTZ group. Compared to the extracts of T. majus  (HETM  and  TMLR),  the  HCTZ  treated animals presented higher amounts of Na+ in the urine. Both ACTZ and HCTZ treatments increased urinary excretion of K+ by, respectively, 72% and 88%. This parameter  remained  unchanged  in  animals  treated with T. majus's extracts and ISQ groups. The urinary Cl-  excretion  was 12.48  mmol/l/15  h  in  the  SPIRO group (50 mg/kg), 12.35 mmol/l/15 h in the TMLR group (100 mg/kg), 11.20 mmol/l/15 h in the HETM group  (300  mg/kg)  and  10.31  mmol/l/15  h  for  the group  control.  However,  the  measured  values  were quite different for FURO 10 mg/kg (26.33 mmol/l/15 h)  and  HCTZ  10  mg/kg  (20.17  mmol/l/15  h) (Gasparotto et al., 2012). According to the authors, the general profile of  the  diuretic  action  indicates  that  the  effect  of  T. majus extracts and ISQ are close to the one induced by  spironolactone.  They  also  attribute  the  diuretic effect  to  the  inhibition  of  the  angiotensin  converter enzyme and subsequent increase in the bioavailability of  bradykinin,  PGI2  and  nitric  oxide.  Also,  an inhibitory effect on Na+/K+-ATPase may be related to the increased diuresis. Similar to spironolactone, the reduction  in  serum  aldosterone,  associated  with hypotensive action, may increase hydrostatic pressure in renal arterioles, being responsible for the diuretic and  natriuretic  effects  observed.  Low  amounts  of potassium  and/or  other  metals  were  observed  in  T. majus,  a  fact  that  led  the  authors  to  discard  the possibility  that  an  osmotic  mechanism  could  be related to the diuretic effect (Gasparotto et al., 2012). 

Other actions Protective  effects  on  the  blood  and  livers  of  rats against diethyl maleate toxicity, treatment of scurvy, antithrombin activity and prevention against macular degeneration  were  observed  because  of  the carotenoids found in the plant (Niizu & Rodriguez-Amaya,  2005;  Santo  et  al.,  2007;  Koriem  et  al., 2010).  In  the  hormonal  system,  the  hydroethanolic extract  obtained  from  T.  majus’s  leaves  does  not affect the ex vivo uterine contractility of pregnant rats induced by oxytocin or arachidonic acid. Moreover, it has  a  lack  of  in  vivo  estrogenic  or  anti-estrogenic activity,  indicating that  T.  majus does  not  modulate estrogen  responses  in  vivo  and  has no  influence on uterine  contractility.  It  is  also  unable  to  elicit androgenic activities, block the effects of testosterone on  androgen-sensitive  tissues  such  as  prostate, seminal  vesicle,  glans  penis  and  levator ani/bulbocavernosus muscle (Lourenço et al., 2012). Also, from aqueous and hydroethanolic extracts of T. majus, Bazylko et al. (2013), examined the potential anti-inflammatory  activity,  and  evaluated  the inhibition  of  cyclooxygenase  1  (COX1)  and hyaluronidase.  All  extracts  showed  inhibition  of cyclooxygenase  1  activity,  with  the  extracts  from freeze-dried  herbs  exhibiting  strong  action  at  a concentration of  50  µg/mL  an effect comparable  to that  of  2  µM  indomethacin.  However,  none  of  the extracts acted as inhibitors of hyaluronidase (Bazylko et al., 2013). 

The oil  produced  by  the  seeds,  known  worldwide  as Lorenzo's  oil,  is  used  to  treat  a  severe  and degenerative  disease  called  adrenoleukodystrophy (Carlson & Kleiman, 1993).

Flavonoids Several flavonoids have been isolated from T. majus. Koriem et al analyzed the flavonoids present in the leaves  and  flowers  of  T.  majus’s  methyl  alcohol extract  with  liquid  chromatography/mass  spectra (LC/MS). The results showed a greater amount of a kaempferol  glucoside  (9.40  mg/100  mL  extract), followed  by  isoquercitroside  (2.25  mg/100  mL extract)  and  quercetol  3-triglucoside  (1.17  mg/100 mL extract) (Koriem et al., 2010). Using electrospray ionization-mass  spectrometry  (ESI-MS)  and  high performance  liquid  chromatography  (HPLC-UV)  to analyze  the  leaf  extracts,  Gasparotto  et  al.  (2011a) obtained,  as  the  major  components  of  the  fraction eluted  with  water  and  ethanol,  isoquercitrin  and kaempferol glucoside (Gasparotto et al., 2011a). Bazylko  et  al.  (2013),  demonstrated  the presence  of  quercetin-3-O-glucoside  (isoquercitrin) and  kaempferol-3-O-glucoside  (astragalin)  in  the aqueous  extract  of  the  T.  majus’s  herb.  Also,  the presence  of  quercetin  and  kaempferol  derivatives were detected (Bazylko et al., 2013). In another work from  the  same  research  group,  a  higher  content  of flavonoids  was  identified  in  the  hydroethanolic extract  and  aqueous  extract  of  leaves  and  flowers (26.0 mg/g and 15.2 mg/g, respectively), follwed by the herb juice (11.2 mg/g). In a similar pattern, the content  of  total  phenols  was  35.6  mg/g  in  the hydroethanolic extract and 29.5 mg/g in the aqueous extract, followed by herb juice (19.5 mg/g) (Bazylko et al., 2014). 

Isoquercitrin is a natural flavonoid glucoside, quercetin analog, that has been found to have a wide range of  biological properties (Razavi et al., 2009), such  as  diuretic  effect;  anti-inflammatory  action; antioxidant activity, decreasing ROS levels; reducing capability  of  lipid  peroxidation  and  inhibition  of adipocyte  differentiation (Rogerio  et  al.,  2007; Gasparotto et al., 2011a; Li et al., 2011; Lee et al., 2011). Lipid peroxidation is a chain reaction of  the polyunsaturated fatty acids of cell membranes, which undergo  alterations  in  permeability,  fluidity  and integrity  due  to  production  of  free  radicals.  These damaged  cells  are  predisposed  to  well  known comorbidities, such as systemic arterial hypertension, dyslipidemia,  thromboembolic  events,  diabetes mellitus  and  cancer (Mahattanatawee  et  al.,  2006).  Many flavonoids are antioxidants, hence some of the compounds found in T. majus may act to prevent cell degeneration (Bohm  et  al.,  1998).  For  example, kaempferol acts as a proton radical scavenger (DPPH scavenging  assay),  hydroxyl  radical  scavenger (deoxyribose degradation assay) and metal chelating agent (Singh et al., 2008). 

Glucosilonates Glucosilonates  are  hydrophilic  compounds  that  are chemically and thermally stable. Its hydrolysis occurs due  to  an  enzymatic  reaction  mediated  by endogenous enzyme myrosinase (ß-thioglucosidase). This  enzyme  occurs  in  plants  containing glucosilonates, but in separate compartments. When the tissue gets damaged, e.g. by the action of fungi, chewing  or  cutting,  the  glucosilonates  are  put  in contact  with  myrosinase,  thereby  releasing  benzyl isothiocyanate (Bones & Rossiter, 1996). The  main  glucosilonates  found  in  T.  majus are glucotropaeolin (Figure 1)  and sinalbin. Koriem et al obtained both constituents from the leaves and flowers of T. majus’s methyl alcohol extract (1.65 mg of glucotropaeolin/100 mL extract and 12.54 mg of sinalbin/100 mL extract) (Koriem et al., 2010). Using HPLC method, Bazylko et al. (2013) also showed the presence  of  glucotropaeolin  in  T.  majus's hydroethanolic extract obtained at 90° C (Bazylko et al., 2013). Interesting, in another work from the same group, the analysis showed a lack of glucotropaeolin in  the  aqueous  extract  and  juice.  Moreover,  only traces  of  glucotropaeolin  in  the  hydroethanolic extract were observed (Bazylko et al., 2014). Koriem  et  al.  (2010),  dosed  benzyl isothiocyanate  in  the  methyl  alcohol  extract  of  T. majus’s  leaves  and  flowers,  founding  20.24  mg/100 mL  extract  (Koriem  et  al.,  2010).  Benzyl isothiocyanate  has  important  physiological  roles.  It stimulates  the  chemo-protective  mechanisms,  but, depending  on  its  concentration,  can  also  induce cellular stress. Act as inducers of phase 2 enzymes of detoxification  mechanism  and  inhibit  phase  1 enzymes,  thereby  accentuating the cell performance in chemical detoxification. In vitro studies have also shown  antimicrobial  and  anthelmintic  activities. Moreover,  it  has  an  important  anticancer  function, increasing the occurrence of apoptosis of cancer cells (Kermanshai  et  al.,  2001;  D`agostini  et  al.,  2005; Morant et al.,  2008; Volden et al., 2008; Sofrata et al., 2011).

Fatty acids Koriem et al. (2010), dosed the fatty acids content in the leaves and flowers of T. majus’s  methyl  alcohol extract  through  liquid  chromatography/mass  spectra (LC/MS).  The  phytochemical  screening  showed  a higher  concentration  of  linoleic  acid  (1.18  mg/100 mL extract), followed by oleic acid (0.71 mg/100 mL extract)  and  erucic  acid  (0.22  mg/100  mL  extract) (Koriem et al., 2010). The essential fatty acids,  oleic and  linoleic, have important functions to the organism. They can help to prevent heart disease, decrease blood clotting, suppress cancer formation, suppress a wide range of allergic mediators, and exert neuroprotective action, among others (Chin et al., 1992; Bemelmans et al., 2002; Martínez-González & Bes-Rastrollo, 2006). Oleic acid  is  called  as  an  omega  9  acid.  It participates  in  the  human  metabolism,  as  an antioxidant  and  playing  fundamental  role  in  the synthesis of hormones (Bressan et al., 2009). Also, linoleic acid, called as an omega 6 acid. It is a precursor of arachidonic acid, having important role in the production of a series of lipid mediators, the  eicosanoids,  which  are  synthesized  through  the arachidonic  acid  cascade (James  et  al.,  2000).  It  is necessary  to  keep  cell  membranes,  brain  functions and the transmission of nerve impulses under normal conditions.These fatty acids are known to participate in  the  transfer  of  atmospheric  oxygen  to  blood plasma,  the  cell  division  and  the  synthesis  of hemoglobin (Youdim et al., 2000).

Other constituents In  addition  to  the  compounds  already  mentioned above,  other  components  of  T.  majus  have  been reported, including carotenoids, terpenoids,  ascorbic acid,  anthocyanins,  esters  of  quinic  acid  with cinnamic  acids  (chlorogenic  acids  and  p-coumaroylquinic  acids),  sugar  and  minerals (Harbone,  1963;  Ferri  et  al.,  1981;  Niizu  & Rodriguez-Amaya, 2005; Garzón & Wrolstad, 2009; Bazylko et al., 2013).