Teken / Ixodida
Teken (Ixodida) vormen een orde van geleedpotige parasieten die behoren tot de klasse der spinachtigen. Samen met de mijten vormen zij de onderklasse der Acarina. Teken zijn nauw verwant aan de mijten.
Teken leven van het bloed van gewervelde dieren: ze bijten zich vast in de huid en laten zich na een bloedmaaltijd, die enige uren tot dagen duurt, weer vallen. Het dier waarop de teek leeft, wordt gastheer genoemd. Bekende gastheren van teken zijn vogels, reptielen en verschillende zoogdieren.
Tekenwerende middelen
DEET, is dat veilig?
Het meest bekende en gebruikte tekenwerende middel is DEET, oftewel N,N-Diethyl-3-methylbenzamide. DEET werd in de 2e wereldoorlog ontwikkeld door het Amerikaanse leger. Het kan als oplosmiddel bepaalde stoffen aantasten, waaronder verschillende plastics en leer. Over DEET werd en wordt nog steeds gezegd dat het voor de mens onschadelijk is. Er komen echter steeds meer berichten en zelfs bewijzen dat dit, zoals zo vaak met dit soort middelen, toch anders ligt. DEET heeft neurotoxische effecten door het remmen van het enzym acetylcholinesterase, zowel bij insecten als bij mensen en andere zoogdieren. In diverse zenuwgassen zorgt deze remmende werking ervoor dat de eenmaal aangesproken spiercel continu zeer sterk gestimuleerd wordt tot contractie, wat, als het gebruikt wordt als biologisch wapen - dus toegepast in grote hoeveelheden - tot de dood leidt. Om deze redenen blijven teken en muggen graag uit de buurt van DEET. Dit zou de mens eigenlijk ook moeten doen. Zichzelf en alle kleding steeds weer opnieuw met DEET insmeren en besproeien is niet bevorderlijk voor de gezondheid.
Preventie met plantaardige etherische oliën.
Teken - ze hebben geen oren en ogen maar wel een extreem gevoelig reukorgaan - hebben een grote afkeer van de geur van bepaalde plantaardige etherische oliën zoals theeboomolie of eucalyptusolie. Deze oliën, die volkomen onschadelijk zijn voor kinderen, volwassenen en het milieu - etherische oliën zijn zelfs onschadelijk voor de teek - kan men dus heel goed inzetten als verantwoord tekenwerend middel.
Men kan zelf een prima en prettige tekenwerende huidolie maken met bijvoorbeeld het volgende recept: etherische olie van teatree, lavendel, geranium, pepermunt, citroenolie (2 delen) en koudgeperste zonnebloemolie (10 keer zoveel als de etherische oliën samen). Bij voorkeur hoogwaardige oliën van biologische kwaliteit gebruiken.
Deze "tekenolie" weert niet alleen teken af, maar voedt - niet alleen door de etherische oliën maar ook door de zonnebloemolie (laatste bevat bijvoorbeeld zeer veel vitamine E) - ook de huid, waardoor de immuunfunctie van de huid zelf ook beter wordt (en de kans op infectie dus ook langs deze weg kleiner). De olie beschermt ook tegen muggen en tegen uitdroging. De samenstelling is zo gekozen dat de olie bovendien een prettige en ontspannende geur heeft.
Als men in het voorjaar of de zomer de natuur ingaat, kan men de olie insmeren op de onbedekte huid, vooral benen en armen, eventueel ook voeten, nek en oren, schouders en oksels. Voor optimale werking het insmeren na 2 à 3 uur herhalen.
Natural essential oils can also help repel ticks
Essential oils of lemon eucalyptus, citronella, geranium, and peppermint oils are used in commercial insect repellents. Lemon eucalyptus was effective at reducing the numbers of tick bites by 34% against the European castor bean tick, which carries Lyme and co-infections⁶. Citronellol, a major compound in citronella essential oil, geraniol from lily of the valley, and eugenol from clove oil demonstrated pronounced effects at repelling the castor bean tick⁷. In one study, geranium essential oil at 103 mcg/cm² repelled more than 90% of Amblyomma americanum (lone star tick) nymphs⁸.
In other nymph tick studies on the species Ixodes scapularis (deer tick) and on lone star ticks, these obscure essential oils were effective at repelling ticks: amyris (827 mcg oil/cm²)⁹, Cupressus funebris wood (deer tick EC(100) 10.3 mcg oil cm², lone star EC(95) 42.6 mcg oil cm²), Juniperus communis (deer tick EC(90) 10.3 mcg oil cm², lone star EC(95) 50.8 mcg oil cm²), and Juniper chinensis (deer tick EC(73) 10.3 mcg oil cm², lone star EC(95) 91.7 mcg oil cm²)¹⁰. Hydrogenated nepetalactones found in the essential oil of catmint were effective at repelling deer tick nymphs¹¹. The essential oil of catnip, a relative of catmint, contains 12 – 84% nepetalactones¹². As a topical repellent, light sesame, coconut, peanut, and olive oil, which offer partial (20-30%) UV protection¹³ can be mixed with tick repelling oils to apply to the skin. Essential oils can also be used to kill emerging nymph ticks.
Essential oils and their compounds are also effective at killing ticks
Incense cedar heartwood, western juniper and Port-Orford-cedar essential oils were effective a killing deer tick nymphs¹⁴. Nootkatone, a compound in grapefruit essential oil, was effective at killing nymph ticks: I. scapularis (deer tick) 50% lethal concentration (LC50) 0.16 mcg cm² and 90% lethal concentration (LC90) 0.54 mcg cm², A. americanum (lone star) LC50 0.35 mcg cm² and 90% lethal concentration LC90 1.0 mcg cm², D. Variabilis (wood tick) LC50 0.23 mcg cm² and LC90 0.64 mcg cm², and R. sanguineus (brown dog tick) 0.19 mcg/cm², and LC90 0.48 mcg/cm²¹⁵. Nootkatone is found at concentrations of 0.1 – 0.8% in grapefruit essential oil¹⁶. Nootkatone from Alaskan yellow cedar was also effective a very low concentrations of LC50 0.0029% at killing nymph deer ticks¹⁷. When encapsulated in lignan and sprayed as a pest control, nootkatone at 0.56% was 100% effective for eight weeks¹⁸. Unfortunately, nootkatone is very expensive. Natural desiccants and insecticide soaps are also effective at killing ticks.
Soaps and desiccants are effective at killing ticks on landscaping materials
Diatomaceus earth and Dri-die were 10-41% effective at killing ticks. Silica-based desiccant Drione and Safer’s insecticidal soap (SIS) treatments were 91-100% effective at killing ticks on landscape materials, which both contain pyrethrins¹⁹. Drione and Safer’s soap provided short-term reduction in deer tick nymph populations for about a week²⁰. IC2, which is a combination of Bifenthrin mixed with 10% rosemary oil, sprayed with water was highly effective against adult and nymph ticks²¹. Bifenthrin is a pyrethroid insecticide which is highly toxic to aquatic organisms. Tick killing compounds can be sprayed easily around your home.
Anti-tick compounds can be sprayed around your home with spreaders and sprayers
A spreader can be used to spread powdered desiccants like diatomaceus earth or boric acid. A pressure washer or hose sprayer can be used to spread essential oils dissolved in a little alcohol, liquid desiccants, or insect soaps. With a little preparation, the right repellents and tick killers can protect your home and your family from infected ticks.
A combination of the right tick killing strategies and repellents help keep ticks away
Just like setting up protective barriers to keep a child safe, using anti-tick compounds can help keep ticks away from your home. Topical repellents can also help protect you from ticks when you are out and about. Some of these chemicals have cautions on their use, so follow their directions carefully. Natural essential oils, desiccants, and soaps provide a less toxic repellent or tick killer for chemically sensitive people and animals.
1. Centers for Disease Control and Prevention. Lyme disease transmission. http://www.cdc.gov/lyme/transmission/
2. Agency for Toxic Substances and Disease Registry. DEET (N,N-Diethyl-meta-toluamide) Chemical Technical Summary for Public Health and Public Safety Professionals. http://www.atsdr.cdc.gov/consultations/deet/health-effects.html
3. Environmental Protection Agency. Permethrin Facts (Reregistration Eligibility Decision (RED) Fact Sheet).http://www.epa.gov/oppsrrd1/REDs/factsheets/permethrin_fs.htm
4. Prevention and Health Promotion Administration, Maryland Dept of Health and Mental Hygiene. Permethrin Fact Sheet.http://phpa.dhmh.maryland.gov/SitePages/permethrin.aspx
5. National Pesticide Information Center. Picaridin Fact Sheet. http://npic.orst.edu/factsheets/Picaridintech.pdf
6. Gardulf A, Wohlfart I, Gustafson R. A prospective cross-over field trial shows protection of lemon eucalyptus extract against tick bites. J Med Entomol. 2004 Nov;41(6):1064-7. http://www.ncbi.nlm.nih.gov/pubmed/15605645
7. Thorsell 1, Mikiver A, Tunón H. Repelling properties of some plant materials on the tick Ixodes ricinus L. Phytomedicine. 2006 Jan;13(1-2):132-4. Epub 2005 Jul 1. http://www.ncbi.nlm.nih.gov/pubmed/16360943
8. Tabanca N, Wang M, Avonto C, Chittiboyina AG, Parcher JF, Carroll JF, Kramer M, Khan IA. Bioactivity-guided investigation of geranium essential oils as natural tick repellents. J Agric Food Chem. 2013 May 1;61(17):4101-7. doi: 10.1021/jf400246a. Epub 2013 Apr 22. http://www.ncbi.nlm.nih.gov/pubmed/23528036
9. Carroll JF, Paluch G, Coats J, Kramer M. Elemol and amyris oil repel the ticks Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in laboratory bioassays. Exp Appl Acarol. 2010 Aug;51(4):383-92. doi: 10.1007/s10493-009-9329-0. Epub 2009 Dec 18.http://www.ncbi.nlm.nih.gov/pubmed/20016930
10. Carroll JF, Tabanca N, Kramer M, Elejalde NM, Wedge DE, Bernier UR, Coy M, Becnel JJ, Demirci B, Başer KH, Zhang J, Zhang S. Essential oils of Cupressus funebris, Juniperus communis, and J. chinensis (Cupressaceae) as repellents against ticks (Acari: Ixodidae) and mosquitoes (Diptera: Culicidae) and as toxicants against mosquitoes. J Vector Ecol. 2011 Dec;36(2):258-68. doi: 10.1111/j.1948-7134.2011.00166.x. http://www.ncbi.nlm.nih.gov/pubmed/22129397
11. Feaster JE, Scialdone MA, Todd RG, Gonzalez YI, Foster JP, Hallahan DL. Dihydronepetalactones deter feeding activity by mosquitoes, stable flies, and deer ticks. J Med Entomol. 2009 Jul;46(4):832-40. http://www.ncbi.nlm.nih.gov/pubmed/19645285
12. Tisserand, R. and Young. R. 2013 Essential Oil . 2nd Ed. p. 607.
13. Korać RR, Khambholja KM. Potential of herbs in skin protection from ultraviolet radiation. Pharmacogn Rev. 2011 Jul;5(10):164-73. doi: 10.4103/0973-7847.91114. http://www.ncbi.nlm.nih.gov/pubmed/22279374
14. Dolan MC, Dietrich G, Panella NA, Montenieri JA, Karchesy JJ. Biocidal activity of three wood essential oils against Ixodes scapularis (Acari: Ixodidae), Xenopsylla cheopis (Siphonaptera: Pulicidae), and Aedes aegypti (Diptera: Culicidae). J Econ Entomol. 2007 Apr;100(2):622-5. http://www.ncbi.nlm.nih.gov/pubmed/17461093
15. Flor-Weiler LB, Behle RW, Stafford KC 3rd. Susceptibility of four tick species, Amblyomma americanum, Dermacentor variabilis, Ixodes scapularis, and Rhipicephalus sanguineus (Acari: Ixodidae), to nootkatone from essential oil of grapefruit. J Med Entomol. 2011 Mar;48(2):322-6. http://www.ncbi.nlm.nih.gov/pubmed/21485368
16. Tisserand, R. and Young. R. 2013 Essential Oil Safety. 2nd Ed. p. 610.
17. Panella NA, Dolan MC, Karchesy JJ, Xiong Y, Peralta-Cruz J, Khasawneh M, Montenieri JA, Maupin GO. Use of novel compounds for pest control: insecticidal and acaricidal activity of essential oil components from heartwood of Alaska yellow cedar. J Med Entomol. 2005 May;42(3):352-8. http://www.ncbi.nlm.nih.gov/pubmed/15962787
18. Bharadwaj A, Stafford KC 3rd, Behle RW. Efficacy and environmental persistence of nootkatone for the control of the blacklegged tick (Acari: Ixodidae) in residential landscapes. J Med Entomol. 2012 Sep;49(5):1035-44.http://www.ncbi.nlm.nih.gov/pubmed/23025184
19. Patrican LA, Allan SA. Laboratory evaluation of desiccants and insecticidal soap applied to various substrates to control the deer tick Ixodes scapularis. Med Vet Entomol. 1995 Jul;9(3):293-9. http://www.ncbi.nlm.nih.gov/pubmed/7548948
20. Allan SA, Patrican LA. Reduction of immature Ixodes scapularis (Acari: Ixodidae) in woodlots by application of desiccant and insecticidal soap formulations. J Med Entomol. 1995 Jan;32(1):16-20. http://www.ncbi.nlm.nih.gov/pubmed/7869337
21. Rand PW, Lacombe EH, Elias SP, Lubelczyk CB, St Amand T, Smith RP Jr. Trial of a minimal-risk botanical compound to control the vector tick of Lyme disease. J Med Entomol. 2010 Jul;47(4):695-8. http://www.ncbi.nlm.nih.gov/pubmed/20695287
Afr J Tradit Complement Altern Med. 2014 Jun 4;11(4):48-53. eCollection 2014.Phytotherapeutic activity of Euphorbia cyparissias extracts on Ixodidae (Acari) female ticks. Cristina RT1, Morariu S2, Cernea MS3, Dumitrescu E1, Muselin F4, Cumpanaşoiu
BACKGROUND:
Given its numerous biologically active components, Euphorbiaceae has been found to be a large plant family and polyvalent with quite interesting therapeutic activity that can be studied.
MATERIALS AND METHODS:
The ixodicidal activity of Euphorbia cyparissias extracts was studied in vitro and in vivo. Tested concentrations were 10, 5, 2, 1, 0.5 and 0.25%. Plant extracts were obtained according to the Romanian Pharmacopeia, Xth Ed. (1993) instructions at Tincturae or Glicerolum monograph. The whole plant was dried and sliced (1–1.5 cm) and was placed in a glass container for extraction in a 1:5 ratio (m/m) for 10 days in a 70° alcohol solution. The contents of the container were agitated 3–4 times/day and on the final day, the resulting extract was decanted and the remaining residue was pressed and both extracted liquids were homogenized and reunited and left to rest for an additional period of 6 days at 5–10 °C. Afterwards, the extract was filtered to obtain the mother tincture (20%).
The mother tincture, with initial concentration of 20%, was diluted gradually with 70° alcohol, obtaining the concentrations of 10, 5, 2, 1, 0.5 and respectively 0.25%. Similarly with the procedure presented for tinctures, glycerinates were obtained by diluting the 20% mother tincture with pure pharmaceutical glycerine (USP, purity 99.5%).
RESULTS:
For the in vitro study, conducted on field-collected female specimens of Dermacentor marginatus and Haemaphysalis punctata, the efficacy results showed that the ticks died after exposure in the case of 10, 5, and 2% tincture concentrations. The effects appeared after 30 minutes and became more visible 120 minutes after each exposure. The statistical differences regarding the used concentrations were found to be: F = 6.51, df = 5, P < 0.001. The in vivo study of the efficacy of E. cyparissias concentrations was performed on 35 naturally infested sheep and on 30 bovines parasitized with Ixodes ricinus, sprayed with tincture and glycerinate dilutions (bovines) on days 0 and 7. The results revealed detrimental effects on the survivability of female ticks, the most prominent being the reduction of their movement capacity. In sheep in vivo efficiency observed within 24 hrs varied, between 1 and 23% for D. marginatus and between 7 and 27% for H. punctata and respectively between 2 and 53% after 24 hrs, for I. ricinus, comparable effects being also found 72 hrs after the second administration of Euphorbia extracts.
CONCLUSION:
Extracts from E. cyparissias may be used, with results, as an ecologic alternative tick control management method, being a cheap solution, with a sizeable role in reducing the use of synthetic and/or other harming and resistance source ixodicidal conditionings.
Tinctures from E. cyparissias may be used, with noticeable results, as an ecological alternative to tick control management, being a cheap solution, with a sizeable role in reducing the use of synthetic or other harmful and resistance generating source ixodicidal conditionings.
Euphorbia cyparissias tinctures have a significant acaricidal effect, even in lower concentrations (1%), but only in vitro, being dependent on the exposure time (P < 0.001) and the used doses (P < 0.001).
In the in vivo conditions there are no significant differences resulting from the use of E. cyparissias tinctures regarding the ixodicidal / ixodifugal effects, the observed effect being mainly repellent and only low or moderately ixodicidal. The glycerinated solutions compared to the tinctures have shown a stronger ixodicidal effect at a concentration of 5 and 10% and an ixodifugal effect at 2%.
Journal of Medical Entomology 43(4):731-736. 2006
Repellency of Oils of Lemon Eucalyptus, Geranium, and Lavender and the Mosquito Repellent MyggA Natural to Ixodes ricinus (Acari: Ixodidae) in the Laboratory and Field
MyggA Natural (Bioglan, Lund, Sweden) is a commercially available repellent against blood-feeding arthropods. It contains 30% of lemon-scented eucalyptus, Corymbia citriodora (Hook.) K. D. Hill & L. A. S. Johnson (Myrtaceae), oil with a minimum of 50% p-menthane-3,8-diol. MyggA Natural also contains small amounts of the essential oils of lavender, Lavandula angustifolia Mill. (Lamiaceae), and geranium, Pelargonium graveolens L’Her. (Geraniaceae). In laboratory bioassays, MyggA Natural and C. citriodora oil exhibited 100% repellency against host-seeking nymphs of Ixodes ricinus (L.) (Acari: Ixodidae). Lavender oil and geranium oil, when diluted to 1% in 1,2-propanediol, had weak repellent activities on I. ricinus nymphs, but when diluted to 30% in 1,2-propanediol had 100% repellencies. 1,2-Propanediol (100%) had no significant repellent activity in comparison with that of the control. In field tests in tick-infested areas in central Sweden, tick repellency of MyggA Natural and C. citriodora oil was tested by the blanket-dragging technique for 4 d during a 6-d period. The repellencies (74 and 85%, respectively) on day 1 are similar (89%) to that of blankets treated in a similar manner with 19% diethyl-methyl-benzamide, based on previous work. Repellencies declined significantly from day 1 to day 6 (74 to 45% for MyggA Natural; 85 to 42% for C. citriodora oil).
Med Vet Entomol. 2005 Dec;19(4):345-52.Evaluation of extracts and oils of tick-repellent plants from Sweden.
Jaenson TG1, Pålsson K, Borg-Karlson AK.
Leaves of Myrica gale Linnaeus (Myricaceae), Rhododendron tomentosum (Stokes) H. Harmaja (formerly Ledum palustre Linnaeus: Ericaceae) and Artemisia absinthium Linnaeus (Asteraceae) were extracted with organic solvents of different polarities and the essential oils of leaves were obtained by steam distillation. The extracts or oils were tested in the laboratory for repellency against host-seeking nymphs of Ixodes ricinus Linnaeus (Acari: Ixodidae). Rhododendron tomentosum oil, 10%, diluted in acetone, exhibited 95% repellency; R. tomentosum and A. absinthium extracts in ethyl acetate, > 70% repellency; A. absinthium extract in hexane, approximately 62% repellency; and M. gale oil, 10%, approximately 50% repellency on I. ricinus nymphs. Compounds in the leaf extracts or in the oils were collected by solid phase microextraction (SPME) and identified by gas chromatography-mass spectrometry (GC-MS) and/or MS. Characteristic volatiles detected from oil or extract of M. gale were the monoterpenes 1,8-cineole, alpha-terpineol, 4-terpineol and thujenol; and of R. tomentosum myrcene and palustrol. Characteristic volatiles from leaf extracts of A. absinthium were sabinene, oxygenated monoterpenes, e.g. thujenol and linalool, and geranyl acetate. Each plant species synthesized numerous volatiles known to exhibit acaricidal, insecticidal, 'pesticidal' and/or arthropod repellent properties. These plants may be useful sources of chemicals for the control of arthropods of medical, veterinary or agricultural importance.