Nel modellino cinetico, non essendoci forze che agiscono sulle particelle (se non durante l'urto con le pareti), l'energia potenziale è nulla. Dunque l'energia interna è uguale all'energia cinetica:
U = K = 3/2 nR T
Questa espressione è valida per i gas perfetti monoatomici.
In generale, per i gas perfetti,
U = CV T
L'energia interna di un gas perfetto dipende solo dalla sua temperatura.
Joule dimostrò sperimentalmente questo risultato studiando l'espansione libera di un gas.
Nelle trasformazioni adiabatiche, Q=0. Il primo principio diventa quindi
ΔU = 0 - L
Se parliamo di un gas perfetto, U = CV T e dunque ΔU = CV ΔT. D'altra parte, per trasfomazioni in cui p può considerarsi costante, L = pΔV e quindi
CV ΔT = -pΔV
Usando l'equazione di stato dei gas perfetti, p = nR T/V e dunque
ΔT /T = -(nR/CV) ΔV /V
La variazione relativa della temperatura è proporzionale alla variazione relativa del volume. Si dimostra che questo significa che temperatura e volume durante una trasformazione adiabatica di un gas perfetto sono legate dalla relazione
T=Vα ,
dove α=-nR/CV