HISTORIA DE LAS POTENCIAS
El primer intento de representar números demasiado grandes fue emprendido por el matemático y filósofo griego Arquímedes, descrito en su obra El contador de Arena en el siglo III a. C. Ideó un sistema de representación numérica para estimar cuántos granos de arena existían en el universo. El número estimado por él era de 1063 granos.
Nótese la coincidencia del exponente con el número de casilleros del ajedrez sabiendo que para valores positivos, el exponente es n-1 donde n es el número de dígitos, siendo la última casilla la Nº 64 el exponente sería 63 (hay un antiguo cuento del tablero de ajedrez en que al último casillero le corresponde -2 elevado a la 63- granos). A través de la notación científica fue concebido el modelo de representación de los números reales mediante coma flotante. Esa idea fue propuesta por Leonardo Torres Quevedo (1914), Konrad Zuse (1936) y George Robert Stibitz (1939).
Aunque no es 100 por ciento seguro, parece que la idea de elevar al cuadrado o al cubo se remonta hasta el tiempo de los babilónicos. Babilonia era parte de Mesopotamia en la zona que ahora consideramos como Irak. La primera mención conocida de Babilonia se encuentra en una tablilla que data del siglo XXIII a.C. Y lo cierto es que aún así ellos estaban lidiando con el concepto de los exponentes, a pesar de que su sistema de numeración (el sumerio, que ahora es una lengua muerta) utilizaba símbolos para descomponer fórmulas matemáticas. Curiosamente, no sabían qué hacer con el número 0, de modo que lo delineaban como un espacio entre los símbolos.
La palabra en sí misma proviene del latín "expo", que significa "fuera de", y "ponere", que significa "lugar". Si bien la palabra exponente pasó a significar cosas diferentes, el primer uso moderno registrado de exponente en matemáticas fue en un libro llamado "Integra Arithemetica", escrito en 1544 por el autor inglés y matemático Michael Stifel. Pero él simplemente estaba trabajando con una base de dos, de modo que, por ejemplo, el exponente 3 significaba que la cantidad de números 2 que tendrías que multiplicar para obtener 8. Lo que se vería así: 2 ³ = 8. El método de Stifel se diría que es un poco retrógrado en comparación con la forma en que pensamos acerca del tema hoy. Él diría que "el 3 es la configuración del 8". Pero hoy en día, nos referimos a eso simplemente como una ecuación de 2 al cubo. Hay que recordar que él estaba trabajando exclusivamente con una base o un factor de 2 y traduciendo del latín un poco más literalmente de lo que hacemos actualmente.
POTENCIAS: CONCEPTO Y PROPIEDADES
SIMPLIFICAR POTENCIAS
CONCEPTO DE RADICAL
PROPIEDADES DE LOS RADICALES
ORDENAR RADICALES
EXTRAER E INTRODUCIR FACTORES EN RADICAL
MULTIPLICAR Y DIVIDIR RADICALES
SUMA Y RESTA DE RADICALES
NÚMEROS EN NOTACIÓN CIENTÍFICA
OPERACIONES CON NÚMEROS EN NOTACIÓN CIENTÍFICA
DE RADICAL A POTENCIA Y VICEVERSA
RACIONALIZAR FRACCIONES CON RADICALES
CURIOSIDADES MATEMÁTICAS
CURIOSIDADES SOBRE POTENCIAS Y RAÍCES
Curiosidad 1
El símbolo de raíz se empezó a usar en 1525 y apareció por primera vez en un libro alemán de álgebra. Antes, para indicar la raíz de un número se escribía “raíz de …”. Luego, para abreviar, se empezó a poner “r”. Pero si el número era largo, el trazo horizontal de la “r” se alargaba hasta abarcar todas las cifras. Así nació el símbolo de la raíz, como una “r” mal hecha.
Curiosidad 2
Las dos rayas = que indican igualdad las empezó a utilizar un matemático inglés llamado Robert Recorde que vivió hace más de cuatrocientos años. En uno de sus libros cuenta que eligió ese signo porque “dos cosas no pueden ser más iguales que dos rectas paralelas”
Curiosidad 3
Cuenta la leyenda que Sessa, inventor del ajedrez, presentó el juego a Sherán, príncipe de la India, quien quedó maravillado de lo ingenioso que era y de la variedad de posiciones que en él eran posibles. Con el fin de recompensarle, le preguntó qué deseaba. Sessa le pidió un corto plazo para meditar la respuesta. Al día siguiente se presentó ante el soberano y le hizo la siguiente petición: «Soberano, manda que me entreguen un grano de trigo por la primera casilla del tablero de ajedrez, dos granos por la segunda, cuatro por la tercera, ocho por la cuarta, y así sucesivamente hasta la casilla sesenta y cuatro». Sessa pedía, por tanto, que le recompensaran con el siguiente número de granos: 1 + 2 + 2 2 + 2 3 + 2 4 + … + 2 63 ; ¡más de 18 trillones!, que es la cosecha que se recogería al sembrar 65 veces toda la tierra. Por supuesto que el príncipe no pudo cumplir su promesa…