Esto comienza en el siglo XVI y se desarrolla notablemente en el siglo XVII. Sin embargo, su origen se remonta a los babilónicos y egipcios. En papiros egipcios que datan de 2000 años a. de C. se hallan soluciones de problemas cuya traducción hoy, correspondería a ecuaciones de primer grado.
En el siglo III de nuestra era, el matemático Diofanto de Alejandría escribió la obra Aritmética, en las que crea los signos de la multiplicación, usa abreviaturas y un signo para la sustracción; también resuelve ecuaciones cuadráticas. El aporte de hindúes, árabes y griegos al progreso del algebra es notorio. Comienzan a dar reglas para la solución de ecuaciones de primero y segundo grados con una incógnita.
En el siglo IX, el matemático, astrónomo y geógrafo persa musulmán Abu Abdallah Muḥammad ibn Mūsā al-Jwārizmī (Abu Yā'far) (أبو عبد الله محمد بن موسى الخوارزمي ابو جعفر), conocido generalmente como al-Jwārizmī, vivió aproximadamente entre 780 y 850. Debemos a su nombre y al de su obra principal, Hisab al yabr ua al muqabala, (حساب الجبر و المقابلة) nuestras palabras álgebra, guarismo y algoritmo. La primera palabra significa compensación o restauración (de los dos miembros de la igualdad de una ecuación), y la segunda significa reducción (de términos semejantes).
El concepto de álgebra de al-Jwārizmī, puede ser comprendido ahora con mayor precisión: se ocupa de la teoría de las ecuaciones lineales y cuadráticas con una sola incógnita, y de la aritmética de binomios y trinomios relativos. La solución tenía que ser general y calculable al mismo tiempo en un sentido matemático, esto es, con un fundamento geométrico. La restricción de grado, así como el bajo número de términos, se explica de manera inmediata. De esta emergencia real, el álgebra puede ser vista como una teoría de las ecuaciones resueltas por medio de radicales1, y de cálculos algebraicos de expresiones relacionadas.
Una parte del libro álgebra de al-Jwārizmī, consiste de aplicaciones y ejemplos. Busca reglas para encontrar el área de figuras como el círculo y también para encontrar el volumen de sólidos, como la esfera, el cono y la pirámide.
El término árabe “al-jarb” se transformó en el castellano “álgebra” y su significado sería restaurar.
Si buscas en un diccionario el significado de la palabra “algebrista” te encontrarás con:
-Persona que se dedica al álgebra (parte de las matemáticas).
-Cirujano dedicado especialmente a la curación de dislocaciones de huesos.
Del escritor español, Miguel de Cervantes de Saavedra, (1547 – 1616), siendo el cuarto hijo de un hombre humilde que según la enciclopedia británica, fue barbero, cirujano y acomodador de huesos es decir “Algebrista”, descubrimos una receta nemotécnica para facilitar la solución a tantas expresiones algebraicas de tercer ciclo básico. Primero debemos romperle los huesos iguales (al muqabala) y luego conciliar el resto de la estructura ósea (al yabr ua) quien describe en el capítulo XV de la obra “El ingenioso hidalgo Don Quijote de la mancha”, parte segunda, aparece el término algebrista en este sentido se narra de cómo Don Quijote vence en buena lid al caballero de los espejos, quien no es otro que su paisano, el bachiller Sansón Carrasco. El bachiller maltrecho y apaleado por el famoso hidalgo, se queja a su escudero de “…el dolor grande de mis costillas…” y concluye este capitulo “…En esto fueron razonados los dos, hasta que llegaron a un pueblo donde fue ventura hallar un algebrista, con quien se curo el Sansón desgraciado…”
Así, en el siglo XVI, en las puertas de los barberos castellanos había un cartel con la siguiente leyenda: “ALGEBRISTA Y SANGRADOR”. Esto era porque los antiguos barberos además de afeitar también sacaban sangre y restauraban huesos rotos.
Pues, como has podido leer, el padre de Cervantes era “algebrista”.
Otro tema principal tratado por al-Jwārizmī, en el libro Sindhind zij son los calendarios; el cálculo de las posiciones verdaderas del Sol, la Luna y los planetas, tablas de senos y tangentes; astronomía esférica; tablas astrológicas; cálculos de paralaje2 y de eclipses; y la visibilidad de la Luna. Un manuscrito relacionado, atribuido a al-Jwārizmī, que trata sobre trigonometría esférica
Al-Jwārizmī, escribió un trabajo importante sobre geografía que daba latitudes y longitudes de 2402 localidades como base para un mapa del mundo. El libro, que está basado en la Geografía de Ptolomeo lista latitudes y longitudes, ciudades, montañas, mares, islas, regiones geográficas y ríos. El manuscrito incluye mapas que en conjunto son más precisos que los de. Ptolomeo En particular, está claro que en los sitios para los cuales al-Jwārizmī, disponía de un mayor conocimiento local, como las regiones islámicas, África y el oriente lejano, su trabajo es considerablemente más preciso que el de Ptolomeo, pero para Europa al-Jwārizmī, parece haber usado los datos de Ptolomeo.
Cierto número de trabajos menores fueron escritos por al-Jwārizmī, sobre temas como el astrolabio4, sobre el que escribió dos trabajos, sobre el reloj de sol y sobre el calendario judío. También escribió una historia política que contenía horóscopos de personas prominentes.
El matemático italiano Leonardo de Pisa enriqueció con nuevos adelantos el algebra y la divulgo en Europa. Varios algebristas italianos colaboraron en el adelanto del algebra, entre ellos: Nicolás Tartaglia, Jerónimo Cardano y Ludovico Ferrari.
En 1489, John Widmann ideo los signos (+) y (─); Christoff Rudolf (1525) comenzó a usar el signo √; Robert Recorde (1557) introdujo el signo =; William Oughtred (1631) uso el signo ×; en ese mismo año, Thomas Harriot comenzó a usar los signos <>.
René Descartes en 1637 adopto la letra × para designar la incógnita y comenzó a usar los números enteros, como hoy, para escribir los exponentes.
Isaac Newton en 1676 generalizo la formula para desarrollar un binomio e hizo extensivo el procedimiento al caso de los exponentes negativos y fraccionarios.
TRADUCIR EXPRESIONES A LENGUAJE ALGEBRAICO
VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA
DEFINICIÓN DE MONOMIO Y SUS ELEMENTOS
OPERACIONES BÁSICAS CON MONOMIOS
DEFINICIÓN DE POLINOMIO Y SUS ELEMENTOS
SUMA Y RESTA DE POLINOMIOS
MULTIPLICAR POLINOMIOS
DIVIDIR POLINOMIOS
IDENTIDADES NOTABLES
DIVISIÓN POLINOMIOS MÉTODO DE RUFFINI
VALOR NUMÉRICO DE UN POLINOMIO MÉTODO DE RUFFINI
FACTORIZAR UN POLINOMIO USANDO EL MÉTODO DE RUFFINI
APLICACIÓN MÉTODO RUFFINI => HALLAR EL VALOR DE K DE UN POLINOMIO
MCD Y MCM DE POLINOMIOS
CURIOSIDADES MATEMÁTICAS
Una ecuación cúbica es de la forma a.x3 +bx2 +cx+d=0 donde a, b, c y d son números cualesquiera, y por supuesto que a≠ 0 Lo que tienen todas estas ecuaciones en especial, y que las hace ser de tercer grado, o cúbicas, es que la incógnita aparece elevada al exponente 3, y ese es el mayor exponente de la incógnita. Por muchos siglos, antes del siglo XVI, los matemáticos intentaron encontrar la fórmula que sirviera para determinar las soluciones de cualquier ecuación cúbica, sin lograrlo. La gran proeza matemática de descubrir la fórmula, fue realizada por el matemático italiano Scipione del Ferro, en primer lugar, y más adelante por Nicoló Tartaglia quien la obtuvo por su cuenta, sin conocer el trabajo de Scipione del Ferro. Sin embargo, la fórmula es conocida con el nombre de "fórmula de Cardano", porque otro matemático llamado Girolamo Cardano, quien estudió cuidadosamente las soluciones de Tartaglia y del Ferro, luego fue quien publicó la fórmula por primera vez en un gran tratado sobre resolución de ecuaciones titulado "Ars Magna".
El episodio completo fue más bien trágico para sus protagonistas. En aquellos tiempos, cuando un matemático descubría algo importante, trataba de guardarlo en secreto, para poder enfrentarse en "duelos matemáticos" con otros, y vencer. Resulta que estos duelos eran una especie de torneo o debate público, en el cual dos matemáticos se retaban mutuamente a resolver problemas planteados por ellos. Se proponían los problemas y se efectuaba el duelo unos 15 días después. Asistía el público y también las autoridades locales, y el perdedor en un duelo de estos podía llegar a perder hasta su empleo en una importante Universidad, como consecuencia del desprestigio. El caso fue que Scipione del Ferro guardó su secreto hasta poco antes de su muerte, cuando decidió revelarlo a dos discípulos suyos: Annibale della Nave y Antonio María Fiore. Este último decidió retar a Tartaglia, quien era profesor de Matemáticas en Venecia, para un duelo. Le propuso 30 problemas, los cuales requerían de la solución de ecuaciones cúbicas. Tartaglia propuso a Fiore otros problemas variados y se dedicó por 15 días a trabajar sobre la ecuación de tercer grado hasta lograr encontrar su solución. En el duelo, Tartaglia sorprendió a todos, pero sobre todo a Fiore, con sus soluciones a todos los problemas planteados. Fiore, por su parte, no pudo resolver casi nada de lo propuesto por Tartaglia, y fue declarado perdedor. A su vez, Tartaglia guardó celosamente el secreto de su descubrimiento, a pesar de que Girolamo Cardano, interesado en conocerlo, trató, durante 4 años, de acercarse a él para que compartiera su conocimiento de la solución a la ecuación cúbica.
Finalmente, logró Cardano su objetivo, jurando a Tartaglia solemnemente que jamás lo divulgaría. Pero 3 años más tarde, en 1542, Cardano logra obtener permiso para estudiar los escritos del difunto Ferro, y luego decide, en 1545, publicar la obra "Ars Magna", que contenía, entre otros importantes descubrimientos matemáticos, la solución de la ecuación cúbica. Aunque, en su publicación, Cardano reconoce el mérito de Ferro y Tartaglia en ese descubrimiento, Tartaglia nunca lo perdonó por faltar a su juramento. Tras un año de polémicas, Tartaglia acepta el reto de un alumno de Cardano para un "duelo matemático", en el cual resulta perdedor. Perdió su trabajo de profesor en la Universidad de Brescia y murió 9 años después, humilde, en Venecia.