COMBINATORIA
Historia de las matemáticas
Se puede considerar que en Occidente la combinatoria surge en el siglo XVII con los trabajos de Blaise Pascal » y de Pierre Fermat sobre la teoría de juegos de azar. Estos trabajos, que formaron los fundamentos de la teoría de la probabilidad, contenían asimismo los principios para determinar el número de combinaciones de elementos de un conjunto finito, y así se estableció la tradicional conexión entre combinatoria y probabilidad.
El término “combinatoria” tal y como lo usamos actualmente fue introducido por Wihem Leibniz en su Dissertartio de Arte Combinatoria. De gran importancia para la consolidación de la combinatoria fue el artículo de Ars Conjectandi (el arte de conjeturar) de J.Bernouilli » ; este trabajo estaba dedicado a establecer las nociones básica de probabilidad. Para esto fue necesario introducir también un buen número de nociones básicas de combinatoria pues se usaron fuertemente como aplicaciones al cálculo de probabilidades. Se puede decir que con los trabajos de Leibniz y Bernoulli se inicia el establecimiento de la combinatoria como una nueva e independiente rama de las matemáticas.
El matemático suizo Leonard Euler fue quien desarrolló a principios del siglo XVIII una auténtica escuela de matemática combinatoria. En sus artículos sobre la partición y descomposición de enteros positivos en sumandos, estableció las bases de uno de los métodos fundamentales para el cálculo de configuraciones combinatorias, que es el método de las funciones generadoras. También se le considera el padre de la teoría de grafos por el planteamiento y solución de los problemas de los “Puentes de Konigsberg” usando por primera vez conceptos y métodos de teoría de grafos. Los primeros problemas de teoría de grafos surgieron de la búsqueda de solución a algunos problemas cotidianos y también en el planteamiento de algunos acertijos matemáticos tales como el problema de los Puentes de Konigsberg, la colocación de reinas en un tablero de ajedrez con alguna restricción, problemas de transporte, el problema del viajero, etc....
En Inglaterra a finales del siglo XIX Arthur Cayley (motivado por le problema de calcular el número de isómetros de hidrocarburos saturados) hizo importantes contribuciones a la teoría de enumeración de grafos. Por este tiempo el matemático George Boole usó métodos de combinatoria en conexión con el desarrollo de la lógica simbólica y con las ideas y métodos que Henri Poincaré desarrolló en relación con problemas de topología.
Uno de los factores más importantes que han contribuido al gran desarrollo que ha tenido la combinatoria desde 1920 es la teoría de grafos, la importancia de esta disciplina estriba en el hecho de que los grafos pueden servir como modelos abstractos parar modelar una gran variedad de relaciones entre objetos de un conjunto.
Videos
Diagramas de árbol
Variaciones sin repetición
Variaciones con repetición
Permutaciones
Problema de combinaciones
Rincón de curiosidades
La caracterografía está llamada a ser una ciencia de identificación con grandes posibilidades de exactitud. Es usada por la policía para reconstruir rostros de personas desconocidas a las que es preciso encontrar.
La memoria visual es susceptible de grandes errores, dándose el caso de que varias personas, cuando han visto a otra y tratan de describirla, ofrecen versiones totalmente contradictorias.
Para conseguir mejores resultados se forma un cuadro, compuesto por rasgos independientes del rostro humano, que se combinan.
Existen unos 30 modelos de nariz, 20 clases de orejas, dos docenas de labios, 10 modelos de frente, 40 modelos de ojos y varios tipos de barbillas y pómulos.
Combinándolos lentamente con la colaboración de los testigos (uno sugiere que la frente es más ancha; otro, que las orejas son más pequeñas, etc.), se llega realizar el conocido retrato robot.