ALGEBRA
Historia de las matemáticas
La resolución de ecuaciones algebraicas, o la determinación de las raíces de polinomios, está entre los problemas más antiguos de la matemática. Sin embargo, la elegante y práctica notación que utilizamos actualmente se desarrolló a partir del siglo XV.
En el problema 14º del papiro de Moscú (ca. 1890 a. C.) se pide calcular el volumen de un tronco de pirámide cuadrangular. El escriba expone los pasos: eleva al cuadrado 2 y 4, multiplica 2 por 4, suma los anteriores resultados y multiplícalo por un tercio de 6 (h); finaliza diciendo: «ves, es 56, lo has calculado correctamente». En notación algebraica actual sería: V = h (t² + b² + tb) / 3, un polinomio de cuatro variables (V, h, t, b) que, conociendo tres, permite obtener la cuarta variable.
Algunos polinomios, como f(x) = x² + 1, no tienen ninguna raíz que sea número real. Sin embargo, si el conjunto de las raíces posibles se extiende a los números complejos, todo polinomio (no constante) tiene una raíz: ese es el enunciado del teorema fundamental del álgebra.
Hay una diferencia entre la aproximación de raíces y el descubrimiento de fórmulas concretas para ellas. Se conocen fórmulas de polinomios de hasta cuarto grado desde el siglo XVI (ver ecuación cuadrática, Gerolamo Cardano, Niccolo Fontana Tartaglia). Pero, las fórmulas para polinomios de quinto grado fueron irresolubles para los investigadores durante mucho tiempo. En 1824, Niels Henrik Abel demostró que no puede haber fórmulas generales para los polinomios de quinto grado o mayores (ver el teorema de Abel-Ruffini). Este resultado marcó el comienzo de la teoría de Galois que se ocupa del estudio detallado de las relaciones existentes entre las raíces de los polinomios.
La máquina diferencial de Charles Babbage fue diseñada para crear automáticamente tablas de valores de funciones logarítmicas y diferenciales, evaluando aproximaciones polinómicas en muchos puntos, usando el método de las diferencias de Newton.
Videos
Traducir a lenguaje algebraico
Monomios
Grado de un polinomio
Valor numérico de un polinomio
Operaciones con polinomios
Identidades notables
Ecuación básica primer grado
Ecuación primer grado con paréntesis
Ecuaciones de primer grado con denominadores
Problemas para resolver con ecuaciones
Rincón de curiosidades
Salvado por el Polinomio de Taylor
Un polinomio de Taylor es una aproximación a una función dada, mediante una función polinómica con el grado que se desee. Se conoce un resto que nos indica cuál es el grado de aproximación conseguido. La ventaja de los polinomios de Taylor es que muchas veces (casi todas) es más fácil trabajar con un polinomio que con la función dada (pongamos una logarítmica). Los desarrollos de Taylor se suelen estudiar hoy en todas las carreras donde haya asignaturas de Matemáticas, normalmente en primero o segundo curso.
Igor Tamm (1895 - 1971), ruso y Premio Nobel de Física en 1958, contaba esta anécdota:
Había estallado la Revolución de Octubre (el 25 de octubre de 1917 según el Calendario Juliano, que se encontraba aún en uso en Rusia en esa época; 7 de noviembre según el Calendario Gregoriano, adoptado a partir de 1918), y lo detuvieron unos milicianos cerca de Odessa, donde se hallaba buscando comida. Le tomaron por un agitador antiucraniano, pero decidieron no matarlo y llevarlo ante su jefe. Éste le preguntó a qué se dedicaba. Tamm respondió que era matemático. El jefe de los milicianos le dijo que lo demostrara:
“Calcúlame el error cometido al aproximar una función arbitraria por un polinomio de Taylor de n términos. Si lo haces bien, te dejo ir. Si no lo sabes hacer, te fusilamos”.
Tamm, tembloroso, dibujó con su dedo sobre la arena el desarrollo de la fórmula. Su vida dependía de ello. Al acabar, el jefe guerrillero le echó un vistazo y ordenó que lo soltaran.
Años después, siendo ya Premio Nobel, Tamm contó en persona esta anécdota. Nunca llegó a averiguar quién era aquel jefe de guerrilleros con conocimientos matemáticos.
Saber Matemáticas puede tener ventajas insospechadas...