ÁLGEBRA
Historia de las matemáticas
Diofanto de Alejandría No se sabe nada de la patria de este matemático griego y muy poco referente a su vida. Perteneció a la escuela alejandrina, nació hacia el 250 y murió a los ochenta y cuatro años. Por su originalidad y sus aportaciones, Diofanto fue llamado por los historiadores el padre de los algebristas modernos.
Nacido en Alejandría, nada se conoce con seguridad sobre su vida salvo la edad a la que falleció, gracias a este epitafio redactado en forma de problema y conservado en la antología griega.
Por su originalidad y sus aportaciones, Diofanto fue llamado por los historiadores el padre de los algebristas modernos. En una época de decadencia y de pura exégesis, como era el siglo en que vivió, su obra constituye una notabilísima excepción. Generalmente se le atribuye la introducción del cálculo algebraico en las matemáticas. Según parece, inició el empleo sistemático de símbolos para indicar potencias, igualdades o números negativos.
De la obra de Diofanto conservamos los seis primeros libros y un fragmento del séptimo de un tratado titulado Aritmética, integrado originariamente por trece. Los libros conservados contienen un tratado sobre las ecuaciones y sobre sistemas de ecuaciones determinados e indeterminados, en el que se busca, de modo sistemático, la solución en números racionales. Ha llegado también hasta nosotros un texto suyo sobre Números poligonales. Los antiguos juzgaban también suyos un libro de Porismas y un tratado acerca de las fracciones, Moriastica.
Videos
Video para pasar de lenguaje escrito a algebraico
Video de sumar y restar monomios
Enlaces Web
Web para traducir a lenguaje algebraico
http://www.amolasmates.es/algebraconpapas/recurso/tests/lenguajealgebraico/lengalgebraico01.htm
Página muy completa para realizar operaciones con monomios
Página con un examen de ecuaciones sencillas
http://www.thatquiz.org/es/previewtest?M/V/S/C/51461170385036
Página con ecuaciones simples de 1º grado
http://www.ematematicas.net/ecuacion.php
Página muy completa con teoría de ecuaciones y problemas
donde x es la edad que vivió Diofanto
Según esto, Diofanto falleció a la edad de 84 años. Se ignora, sin embargo en qué siglo vivió. Si es el mismo astrónomo Diofanto que comentó Hipatia (fallecida en 415), habría fallecido antes del siglo V, pero si se trata de personas distintas cabe pensar que vivía a finales de dicho siglo, ya que ni Proclo ni Papo le citan, lo que resulta difícil de entender tratándose de un matemático que pasa por ser el inventor del álgebra. En opinión de Albufaraga, Diofanto vivía en los tiempos del emperador Juliano, hacia 365, fecha que aceptan los historiadores.
Página con ejercicios para resolver con ecuaciones
Video de multiplicar y dividir monomios
Videos para resolver ecuaciones de 1º grado
Videos para resolver problemas usando ecuaciones
Rincón de curiosidades
La palabra "álgebra" es el nombre de la palabra árabe "Al-Jabr, الجبر" en el título del libro al-Kitab al-muḫtaṣar fi al-Gabr ḥisāb wa-l-muqābala, الكتاب المختصر في حساب الجبر والمقابلة, el sentido del Resumen del libro se refiere a la transposición y Cálculo de la Reducción de un libro escrito por el matemático persa islámico, Muhammad ibn Musa Al-Khwārizmī (considerado el "padre del álgebra"), en 820. La palabra Al-Jabr significa "reducción". El matemático helenístico Diophantus ha sido tradicionalmente conocido como el "padre del álgebra", pero en tiempos más recientes, hay mucho debate sobre si al-Khwarizmi, que fundó la disciplina de Al-Jabr, título que se merece su lugar. Los que apoyan a Diophantus apuntan al hecho de que el álgebra que se encuentra en Al-Jabr es algo más elemental que el que se encuentra en el álgebra Arithmetica y que Arithmetica es sincopada mientras que Al-Jabr es totalmente retórica. Los que apoyan el punto de Al-Khwarizmi se basan sobre el hecho de que presenta los métodos de "reducción" y "equilibrio" (la transposición de términos restará al otro lado de una ecuación, es decir, la cancelación de términos a ambos lados de la ecuación), al cual el término Al-Jabr se refería originalmente, y que dio una explicación exhaustiva de la solución de ecuaciones cuadráticas, apoyada por las pruebas geométricas, mientras que el tratamiento de álgebra como una disciplina independiente en su propio derecho. Su álgebra ya tampoco trataría "con una serie de los problemas por resolver", sino con una "exposición que empieza con lo primitivo en el que las combinaciones deben dar todos los posibles prototipos de ecuaciones, que en adelante explícitamente constituyen el verdadero objeto de estudio". También estudió una ecuación para su propio bien y "de forma genérica, en la medida que no sólo surgen en el curso de la solución de un problema, sino que específicamente en la llamada para definir una infinidad de problemas de clase".