ARITMÉTICA
Historia de las matemáticas
Historia de los números irracionales
La introducción de los distintos sistemas de números no ha sido secuencial. Así en el siglo VII a.C, los griegos descubrieron las magnitudes irracionales, es decir números que no pueden ser expresados a través de una fracción, al comparar la diagonal y el lado de un pentágono regular o la diagonal y el lado de un cuadrado, estando, también, familiarizados con la extracción de las raíces cuadradas y cúbicas, pero sin embargo, no conocían los números negativos y el cero, ni tampoco tenían un sistema de símbolos literales bien desarrollado.
El predominio en esta época de la Geometría fue la causa de que la Aritmética y el Álgebra no se desarrollara independientemente. Por ejemplo, los elementos que intervienen en los cálculos se representaban geométricamente y las magnitudes irracionales las tomaban como segmentos de recta. Así una ecuación que hoy en día representamos por:
X2 + a X = b2
para ellos significaba hallar un segmento X tal que si al cuadrado construido sobre él, se le suma un rectángulo construido sobre ese mismo segmento y sobre un segmento dado "a", se obtuviese un rectángulo de área coincidente con la de un cuadrado de lado "b" conocido.
Es en China, hacia los siglos II y I a.C, donde por primera vez se hace uso de coeficientes negativos y se dan reglas para operar con ellos, pudiendo resolver un sistema de tres ecuaciones de primer grado, buscando sólo las soluciones positivas. También conocían técnicas rudimentarias para la resolución de las ecuaciones de tercer grado.
Cuando la matemática Griega comenzó a declinar, Diofanto abandonó la representación geométrica de los números y empezó a desarrollar las reglas del álgebra y aritmética, utilizando un literal, por ejemplo, para representar las incógnitas de una ecuación. En esta etapa, Europa se estanca científicamente y el desarrollo matemático se desplaza hacia la India, Asía Central y los países árabes, inpulsándose sobre todo la Astronomía.
Fueron los indios, entre los siglos V- XV, los que inventaron el sistema de numeración actual, introdujeron los números negativos y comenzaron a operar con los números irracionales de forma semejante que con los racionales sin representarlos geométricamente. Utilizaban símbolos especiales para las operaciones algebraicas, como la radicación. encontraron métodos para resolver ecuaciones, y descubrieron la fórmula del binomio de Newton (en forma verbal).
Durante el periodo renacentista, entre los siglos XVI y XVIII, los europeos toman contacto con las ideas griegas a través de traducciones árabes reemplazándolas, paulatinamente, por los métodos indios.
A principios del siglo XVI, los italianos Tartaglia y Ferrari, lograron resolver por radicales, de forma general, las ecuaciones de tercer y cuarto grado, viéndose involucrados en el uso de los números imposibles (imaginarios), aunque sin fundamento lógico. La notación algebraica se perfecciona gracias a Viéte y Descartes, difiriendo poco de la actual.
A mediados del siglo XVII en Gran Bretaña, Neper inventa los logaritmos y Briggs elabora las primeras tablas de logaritmos decimales. A partir de esta época el nacimiento del análisis hizo que se despreciase un poco el álgebra debido al interés sobre los estudios de magnitudes variables.
Para terminar, es importante resaltar que el conocimiento de los números por parte de los Griegos no fue superado hasta veinticuatro siglos más tarde. Los matemáticos G. Cantor, R. Dedekind, K. Weiertrass y B. Bolzano fueron los que culminaron la obra, que duro medio siglo de investigaciones, sobre los números naturales, enteroros, racionales e irracionales, que considerados juntos, constituyeron lo que se denominó el sistema de los números reales.
Los conceptos de intervalo y entornos asociados a los números reales, así como una operación denominada paso al límite, consolidó y otorgó rigor al conjunto de conceptos y métodos que constituyen la rama de las matemáticas conocida como Cálculo diferencial e Integral.
Videos
Amplificar y simplificar fracciones
Problemas con fracciones
Operaciones con fracciones
De fracción a decimal y viceversa
Conjuntos numéricos
Potencias de exponente entero
Operaciones con potencias de exponente entero
Notación científica
Operaciones en notación científica
Radicales
Suma y resta de radicales
Rincón de curiosidades
Todas las áreas del conocimiento tienen sus curiosidades, anécdotas y datos divertidos. Hoy os queremos contarte veinte cosas sobre las matemáticas que quizás no conocías:
En el área de matemáticas de las pruebas SAT (Scholarship Aptitude Test) de admisión universitaria en EEUU, la puntuación media en 2011 fue de aproximadamente 510 sobre 800. Ahí está la prueba de por qué hay un montón de problemas matemáticos sin resolver.
El gran matemático del siglo XIX Carl Friedrich Gauss llamó a las matemáticas “la Reina de las Ciencias“.
Si las matemáticas son una reina, son la Reina Blanca de “Alicia en el País de las Maravillas”. Esta Reina Blanca creía en “hasta seis cosas imposibles antes del desayuno”. (No es de extrañar que Lewis Carroll escribiera también sobre la geometría algebraica).
Las ecuaciones de Navier-Stokes se utilizan todo el tiempo en la aproximación de flujos de fluidos turbulentos cerca de una aeronave y en el torrente sanguíneo, pero las matemáticas que hay detrás de ellas todavía no se entienden.
Los elementos más extraños de matemáticas a menudo resultan ser útiles. Los cuaterniones, que pueden describir la rotación de objetos en 3-D, se descubrieron en 1843. Eran considerados hermosos pero inútiles hasta 1985, cuando científicos de la computación los aplicaron a la animación digital.
Algunos problemas de matemáticas están pensados para ser confusos, como la paradoja del filósofo británico Bertrand Russell: “el conjunto de todos los conjuntos que no son miembros de sí mismos.” Si el conjunto de Russell no es un miembro de sí mismo, entonces, por definición, es un miembro de sí mismo.
Russell usa un argumento matemático para poner a prueba los límites exteriores de la lógica (¡y la cordura!).
Kurt Gödel, el famoso lógico austriaco, empeoró las cosas en 1931 con su primer teorema de incompletitud, que dice que cualquier sistema matemático suficientemente poderoso debe contener declaraciones que sean verdaderas pero indemostrables. Gödel se dejó morir de hambre en 1978.
Pero los pensadores y aficionados dispuestos a resolver problemas matemáticos no descansan. Millones de ellos lucharon durante 358 años con el último teorema de Fermat, una nota inacabada que el político y matemático amateur del siglo 17 Pierre de Fermat garabateó en el margen de un libro.
¿Sabes que 3^2 + 4^2 = 5^2? Fermat afirmó que no hay números que encajen en el patrón (a^n + b^n = c^n) cuando se eleva a una potencia superior a 2.
Finalmente, en 1995, el matemático inglés Andrew Wiles demostró que Fermat tenía razón, pero para hacerlo tuvo que usar matemáticas que Fermat nunca conoció. En la introducción de las 109 páginas deprueba de Wiles también cita decenas de colegas, vivos y muertos, de los cuales aprovechó su conocimiento.
En una conferencia en París en 1900, el matemático alemán David Hilbert decidió aclarar algunos misterios matemáticos persistentes mediante el establecimiento de 23 problemas clave. Para el año 2000 los matemáticos habían resuelto todos los problemas de Hilbert excepto una hipótesis planteada en 1859 por Bernhard Riemann.
La hipótesis de Riemann es considerada el problema sin resolver más importante en matemáticas. Se afirma que hay un patrón oculto en la distribución de los números primos (los números que no se pueden factorizar, como 5, 7, 41, y, oh, 1000033).
La hipótesis se ha demostrado experimentalmente para los primeros 100 mil millones de casos, lo que sería una prueba suficiente para un contable o incluso un físico. Pero no para un matemático.
En el año 2000, el Instituto Clay de Matemáticas anunció premios de 1.000.000 dólares para las soluciones a siete desconcertantes “problemas del milenio.” Diez años más tarde, el instituto entregó su primer premio al ruso Grigori Perelman por resolver la conjetura de Poincaré, un problema que se remonta a 1904.
Demostrando que los matemáticos no comprenden de números de siete cifras, Perelman rechazó el millón de dólares porque sentía que otros matemáticos eran igualmente merecedores del mismo. Actualmente vive recluído en Rusia.
En su adolescencia, Evariste Galois inventó una nueva rama de las matemáticas, llamada la teoría de grupos, para demostrar que “la ecuación de quinto grado” -una ecuación con un término no x5- no podía ser resuelta por fórmula alguna.
Galois murió en París en 1832 a los 20 años, por un disparo en un duelo por una mujer. Anticipando su derrota, pasó su última noche haciendo frenéticamente correcciones y adiciones a sus papeles de matemáticas.
El estudiante de posgrado George Dantzig llegó tarde a la clase de estadística en Berkeley un día de 1939 y copió dos problemas de la pizarra. Entregó las respuestas a los pocos días, disculpándose porque eran más complejos de lo habitual.
Los “deberes” eran en realidad dos teoremas sin probar muy conocidos. La historia de Dantzig se hizo famosa e inspiró una escena de la película “El indomable Will Hunting”.