Las raíces cuadradas son expresiones matemáticas que surgieron al plantear diversos problemas geométricos como la longitud de la diagonal de un cuadrado. El Papiro de Ahmes datado hacia 1650 a. C., que copia textos más antiguos, muestra cómo los egipcios extraían raíces cuadradas.1 En la antigua India, el conocimiento de aspectos teóricos y aplicados del cuadrado y la raíz cuadrada fue al menos tan antiguo como los Sulba Sutras, fechados alrededor del 800-500 a. C. (posiblemente mucho antes). Un método para encontrar muy buenas aproximaciones a las raíces cuadradas de 2 y 3 es dado en el Baudhayana Sulba Sutra.2 Aryabhata en su tratado Aryabhatiya (sección 2.4), dio un método para encontrar la raíz cuadrada de números con varios dígitos.
Los babilonios aproximaban raíces cuadradas haciendo cálculos mediante la media aritmética reiteradamente.
CONCEPTO BÁSICO DE POTENCIA
PROPIEDADES DE LAS POTENCIAS
RAÍZ CUADRADA DE UN NÚMERO
RAÍZ CUADRADA DE UN NÚMERO POR ESTIMACIÓN
OPERACIONES COMBINADAS CON POTENCIAS Y RAÍCES I
OPERACIONES COMBINADAS CON POTENCIAS Y RAÍCES II
El símbolo de raíz se empezó a usar en 1525 y apareció por primera vez en un libro alemán de álgebra. Antes, para indicar la raíz de un número se escribía “raíz de …”. Luego, para abreviar, se empezó a poner “r”. Pero si el número era largo, el trazo horizontal de la “r” se alargaba hasta abarcar todas las cifras. Así nació el símbolo de la raíz, como una “r” mal hecha.