Ammonia

Introduction

On the Rise

"In the past 70 years, global emissions of ammonia have more than doubled from 23 to 60 teragrams per year. (One teragram is 1 billion kilograms or 2.2 billion pounds.) Researchers say the increase is due in large part to an increase in ammonia emissions from agriculture." - ensia

Sickening & Killing Humans

"A few years ago, a group of scientists led by Jos Lelieveld, a researcher at Max Planck Institute for Chemistry in Germany showed that agricultural emissions were the largest contributor to PM2.5 in Europe, Japan, Korea, Russia, Turkey and the eastern U.S. and the leading cause of deaths attributable to air pollution in Germany, Japan, Russia, Turkey and Ukraine. They estimated on a global scale that one-fifth of PM2.5-related deaths could be avoided by eliminating agricultural air emissions."  - ensia

"Through its important role in the formation of particulate matter, atmospheric ammonia affects air quality and has implications for human health and life expectancy1,2. Excess ammonia in the environment also contributes to the acidification and eutrophication of ecosystems3–5 and to climate change6. Anthropogenic emissions dominate natural ones and mostly originate from agricultural, domestic and industrial activities7. However, the total ammonia budget and the attribution of emissions to specific sources remain highly uncertain across different spatial scales7–9. Here we identify, categorize and quantify the world’s ammonia emission hotspots using a high-resolution map of atmospheric ammonia obtained from almost a decade of daily IASI satellite observations. We report 248 hotspots with diameters smaller than 50 kilometres, which we associate with either a single point source or a cluster of agricultural and industrial point sources—with the exception of one hotspot, which can be traced back to a natural source. The state-of-the-art EDGAR emission inventory10 mostly agrees with satellite-derived emission fluxes within a factor of three for larger regions. However, it does not adequately represent the majority of point sources that we identified and underestimates the emissions of two-thirds of them by at least one order of magnitude. Industrial emitters in particular are often found to be displaced or missing. Our results suggest that it is necessary to completely revisit the emission inventories of anthropogenic ammonia sources and to account for the rapid evolution of such sources over time. This will lead to better health and environmental impact assessments of atmospheric ammonia and the implementation of suitable nitrogen management strategies."- Industrial and Agricultural Ammonia Point Sources Exposed

Sources of Ammonia

Agriculture

"Our ability to grow crops depends on nitrogen, which is a critical plant nutrient. But in overabundance, nitrogen can spell trouble. Nitrogen in animal waste and in excess fertilizer can turn into gaseous ammonia. In fact, in the U.S. and Canada, agriculture accounts for more than three-fourths of all ammonia emissions."  - ensia

According to Teagasc "The majority of emissions from agriculture come from livestock: Manure management, housing, and storage produce 48%, manure spreading is responsible, for 30%, grazing 12%, and synthetic fertilizer 10%.

99% of ammonia in Ireland comes from agriculture."

Road Emissions 

Factories

Power Plants

Solutions

Listed approximately from greatest to least impact:

Resources

International

Europe

UK

North America

USA

Maps

International

Grants

International

North America

USA

California