Temporalización: 7 horas
What is a complex number?
Cartesian complex plane. Arithmetic of complex numbers.
Polar complex plane. Operations with complex numbers in polar form.
Roots of complex numbers.
Graphic descriptions using complex numbers.
Find out the solution of the following equations in the set they are given:
x + 3 = 2 in N.
2x + 5 = 6 in Z.
x² = 5 in Q.
x² + 1 = 0 in R.
What is √-4 · √-9?
i =√−1 ⇒ i² = −1. i is the imaginary unit. Then, √−4 = √4√−1 = 2√−1 = 2i.
A complex number is a number z = a + bi, where a and b are real numbers. a is the real part of the complex number and b is the imaginary part of the complex number.
Any complex number can be represented in a plane by this identification: a + bi = (a, b).
From now and on, any polonomical equation has as many solutions as the degree of it.
(a + bi) + (c + di) = (a + c) + (b + d)i.
− (a + bi) = −a − bi
Addition of complex numbers can be seen as a translation in the complex plane.
c (a + bi) = c·a + c·bi
(a + bi)(c + di) = ac + adi + bci + bdi² = ac + adi + bci + bd(−1) = (ac − bd) + (ad + bc)i.
That operation is made with the help of the conjugate of a complex number:
The conjugate of c + di is c − di. To make any division, you just first multiply by the conjugate of the denominator. Look what happen when you multiply a number by its conjugate:
(a + bi)/(c + di) = (a + bi)(c − di)/(c + di)(c − di) ...
Complex arithmetic
Visualizing complex arithmetic
Represent the following complex numbers: 4, 5 - 3i, 1/2 + (5/4)i, -5i, √3i, 0, -1 -i.
Solve the following equations
z²+4=0
z²+6z+10=0
3z²+27=0
3z²-27=0
Make three sums, three subtractions and three multiplications involving all the numbers in exercise 1. Try not to use 0 more than twice.
z = a + bi ⇒ r =
Write in polar form: a) 1+√3i; b) √3+i; c) −1+i; d) 5 −12i; e) 3i; f) −5
Write in standard form: a) 530º ; b) 2135º ; c) 2495º ; d) 3240º ; e) 5180º ; f) 490º .
Given the following complex numbers Dados los complejos z1 = 2270º ; z2 = 4120º ; z3 = 3315º ; calculate: a) z1 · z2 ; b) z2 · z3 ; c) z1 · z3 ; d) z3 : z1 ; e) z2 : z1 ; f) (z1 · z3) / z2 ; g) (z1)² ; h) (z2)³ ; i) (z3)⁴ .
Answer key (contains two errors):
a) 260º ; b) 230º ; c) 2135º ; d) 13292.5º ; e) 390º ; f) 5180º
a) (5√3/2)+(5/2)i; b) −√2+√2i; c) −√2+√2i; d) (3/2) − (3√3/2)i; e) −5; f) 4i
a) 830º ; b) 1275º ; c) 6225º ; d) 1.545º ; e) 2210º ; f) 1.5105º ; g) 4180º ; h) 640º ; i) 81180
Complex numbers have a wide range of applications in various fields of science and engineering. Here is a list of some of the most notable applications:
1. Electronics and Electrical Engineering:
Signal and system analysis.
2. Physics:
Quantum mechanics.
Fluid dynamics.
Electromagnetism.
[Mecánica cuántica](https://es.wikipedia.org/wiki/Mec%C3%A1nica_cu%C3%A1ntica)
- [Dinámica de fluidos](https://es.wikipedia.org/wiki/Din%C3%A1mica_de_fluidos)
- [Electromagnetismo](https://es.wikipedia.org/wiki/Electromagnetismo)
3. Mathematics:
Theory of differential equations.
Analysis of series and sequences.
[Teoría de ecuaciones diferenciales](https://es.wikipedia.org/wiki/Ecuaci%C3%B3n_diferencial)
- [Análisis de series y secuencias](https://es.wikipedia.org/wiki/Serie_(matem%C3%A1tica))
- [Transformadas de Fourier y Laplace](
4. Civil and Mechanical Engineering:
5. Computer Graphics:
6. Control and Automation:
7. Information Theory and Communications:
8. Number Theory:
9. Economics and Finance:
Complex numbers are powerful tools that simplify and solve complex problems in these and other areas.
What is (sqrt(-4))(sqrt(-9))? a) 6 b) -6 c) 6i d) -6i
One of the multiple uses of complex numbers is fractals.
Fractals and the art of roughness (TED talk by Brenoit Mandelbrot).
It'll be a multiple choice test in which you will have to prove having the following skills:
Simplifying expressions with negative roots.
Solve any quadratic equation in ℂ.
Basic operations with complex numbers in standard form (addition, substraction, multiplication, division and "small" powers).
Drawing complex numbers in standard form and polar form.
Identifying real and imaginary part of a complex number written or represented in any form.
Calculating the modulus of a complex number.
Converting complex numbers polar↔standard.
Operations with complex numbers in polar form: multiplication, division and powers.
A. Sentido numérico.
MATE.1.A.2. Relaciones.
MATE.1.A.2.1 Conjunto de números: números racionales e irracionales. Los números reales. Logaritmos decimales y neperianos. Los números complejos como soluciones de ecuaciones polinómicas que carecen de raíces reales.
1.1. Manejar algunas estrategias y herramientas, incluidas las digitales, en la modelización y resolución de problemas de la vida cotidiana y de la ciencia y la tecnología, evaluando su eficiencia en cada caso.
2.2. Seleccionar la solución más adecuada de un problema en función del contexto -de sostenibilidad, de consumo responsable, equidad, etc., usando el razonamiento y la argumentación.