Dos colegas se encuentran al cabo de los años. Tras los saludos iniciales, se preguntan por las familias. Uno de ellos dice:
¿Qué edad tiene cada uno de los hijos?
3. Find the biggest number smaller than 100 that is:
4. Find the smallest number that is bigger than 1000 that is:
5. Remember with this example: 3 is a is a factor or divisor of 15 because 15 : 3 = 5 (exact division). If 15 is a multiple of 3, then 3 is a divisor of 15. Given that, find all the divisors of 15, 16, 27, 44, 13 and 37.
6. Example: D(15) = {1, 3, 5, 15} Look, 1 and 15 are also divisors. When you have found one factor (3), there is always another factor that goes with it (5) –unless the factor is multiplied by itself to give the number.
7. What does happen to 13 and 37?
Have a look at this divisibility rules page and then, do the test at the bottom.
9. Which of the following numbers is a prime one: 21, 82, 31, 33.
10. Safari fotográfico: Múltiplos de 37. Lee el artículo enlazado. Busca múltiplos de 37 en la vida real y hazles una foto con tu móvil. Ojo, no vale "cortar" números para que sean múltiplos de 37, ni prepararlos (por ejemplo, escribiéndolos en una pizarra). Tienen que ser múltiplos "salvajes". Se valorarán más los números más altos y las mejores fotos a criterio del profesor.
11. From this box, choose one number that fits each of these descriptions.
12. Find these numbers:
13. Find the prime factors of 36, 100, 24, 98, 180, 120, 510 and 640.
14. Aplica los criterios de divisibilidad para comprobar si el número 515902 es divisible entre 2, 3, 4, 5 y 11.
15. Halla todos los divisores de 108.
Para ampliar: 5 grandes enigmas de las mates.
Which is the biggest negative number than appear in the video?
What don't like math teachers?
Write a comparison between numbers that appear in the video.
Look at the number line: negatives to the left of 0 and positives to the right of it.
Knowing that:
Numbers to the right of any number on the number line are always bigger (or larger, greater) than that number and
Numbers to the left of any number on the number line are always smaller than that number. You can use also the symbols > (more than) or < (less than) to compare numbers.
1. Fill the gaps:
... is smaller than 4; ... is bigger than –3; 1 > ... ; ... is smaller than –2; –7 is smaller than ..., but bigger than ... ; –1 ... 3; 3 < ... ; ... is smaller than 0 and bigger than –2 ; –4 > ... ; ... is 5 units greater than 1 ; ... is 3 units smaller than –1 ; –8 > ... ; 0 ... –4 ; –2 ... –4
2. The temperatures on three winter days are 1 °C, –4 °C and –2 °C. Write down these temperatures, in order, with the lowest first. What is the difference in temperature between the coldest and the hottest days?
3. One winter morning, the temperature went up from –3 °C to 2 °C. By how many degrees did the temperature rise?
4. In the afternoon, the temperature fell by six degrees from 2 °C. What was the temperature at the end of the afternoon?
5. Temperatures are recorded at midday in five towns: Penistone (-5º), Huddersfield (+3º), Rotherham (-1º), Kiveton (-3º), Anston (0º). Which town was the coldest? What was the difference in temperature between the coldest and the warmest town?
6. Recuerda que cuando sumas o restas números enteros, no importa el orden en el que lo hagas. Eso se llama propiedad asociativa. Mira este ejemplo: 3 – 5 + 10 – 7 + 2 – 3
3 + 10 + 2 – 5 – 7 – 3 = 15 – 15 = 0
7. Work out the following:
A) 7 + 3 – 5 = B) –2 + 3 – 7 = C) –1 + 3 + 4 = D) –2 – 3 + 4 = E) –1 + 1 – 2 = F) –4 + 5 – 8 = G) –3 + 4 – 7 = H) 1 + 3 – 6 = I) 8 – 7 + 2 – 5 – 7 + 12 = J) –4 + 5 – 8 – 4 + 6 – 8 = K) 203 – 202 + 7 –1 + 4 – 2 = L) –6 + 9 – 12 –3 – 3 – 3 = M) –3 + 4 – 6 –102 + 45 – 23 = N) 8 – 10 – 5 + 9 – 12 + 2 + 99 – 100 – 46 = Ñ) 2547 + 3899 – 1885 – 2546 – 3898 = O) 12 - 33 - 15 - 21 + 43 =
8. A sequence begins: 4, 1, –2, –5 … Find out the following number of the sequence. Write down the rule for this sequence.
¿Qué para qué sirven las matemáticas? Pues... para no mojarte pic.twitter.com/BsLXaB4gpl
— Javier Santaolalla (@JaSantaolalla) noviembre 15, 2015