Temporalización estimada: 7 horas. Examen, junto a la unidad 1, el 18 de octubre.
Temporalización: 7 horas
What is a sequence?
Some interesting sequences
Arithmetic progressions and geometric progressions
Limit of a sequence
Some important limits
Criterios de evaluación y estándares de aprendizaje evaluables.
Se desea organizar un torneo de ajedrez en los recreos. Al mismo se han apuntado 24 personas. Se jugará por el sistema de liguilla. ¿Dará tiempo a terminarlo antes de las vacaciones de Navidad?
2, 3, 5, 7, 11, 13, ...
1, 1, 2, 3, 5, 8, 13, 21, ...
2, 10, 12, 16, 17, 18, 19, 200, ...
3, 3, 4, 6, 5, 4, 5, ...
1, 3, 7, 11, 15, 27, 35, ...
1, 11, 21, 1211, 111221, 312211, ...
Search for them in the OEIS. The Online Enciclopedia of Integer Sequences.
A sequence is an enumerated collection of numbers in which order matters. The collection is infinite.
a_1, a_2, a_3, ..., a_n, ...
You can define a sequence by:
Giving a explicit rule to get new terms. For example: "the ordered set of cubed natural numbers"
Giving a list of some terms of the sequence: 1, 8, 27, 64, 125, ....
An algebraic expression involving n: a_n = n³
Recurring law: a_n = a_(n-1) + a_(n-2)
Get the first five terms of the following sequences:
An arithmetic sequence is that where every term is got by adding the same number, called the difference, to the term before.
For example, the sequence of odd numbers: 1, 3, 5, 7, 9, ... can be seen as an arithmetic sequence because it starts at a_1=1 and the successive terms are appearing by adding d=2 to the one before.
A geometric sequence is that where every term is got by multiplying the same number, called the ratio, to the term before.
For example, the sequence of the powers of two, 1, 2, 4, 8, 16, 32, ... can be seen as a geometric sequence because it starts at 1 and the successive terms are appearing by multipliying by r=2 the one before.
The general term of arithmetic an geometric sequences can be seen in the attached image
2. Identify the following sequences as arithmetic or geometric; find their difference (d) or ratio (r) and their general term:
a. 3, 7, 11, 15, 19...; b. 3, 4, 6, 9, 13, 18, …; c) 3, 6, 12, 24, 48, …; d) 1, 3, 9, 27, 81, …; e) 5, –5, 5, –5, 5, …; f) 10, 7, 4, 1, –2, …; g) 100, 50, 25, 12.5, … h) 12, 12, 12, 12, …; i) 3, –5, 7, –9, 11, … j) 2 840; 284; 28.4; …; k) 90, –30, 10, –10/3, 10/9, … l) 17,4; 15,8; 14,2; 12,6; …
Find the attached image for the formulae
The terms of the following sequence tend to zero when n goes higher and higher. That is called “the limit” of the sequence. Give the absolute error between the 1000th term and that limit (b_n = -3/(2n+1))
Your teacher offers you a deal. Every class-day he will give you 1000 €. You will have to give him, in exchange, 1 cent. the first class-day, 2 cents. the second class-day and keep on doubling the quantity till we get to the end of this term. Would you accept the deal?
A worker earns a salary of 1200 €. In her contract is stipulated that the salary will increase every three years by 150 €. If she works for the company 35 years. Can you tell what will be her salary at the end of her lifework? What is the total amount of money earn by that worker?
You save 5000 € in a bank that offers you 4% of interest per year. How much will you have saved after ten years? How long will it take to get to 10000 €?
What is the 1000th term of the following sequence? 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5... (source).
Choose 9 out of the following 10 questions
1. About the set of Real Numbers:
Classifying numbers written in different forms (fractions, decimals, radicals, scientific notation, factorials...).
Sorting different kind of numbers. You will have to say to which set of numbers they belong: N, Z, Q, R...
2. Rationalising and/or simplifying expressions.
3. Find x in simple logarithmic equations.
4. Write something equals to n (n ∈ Z).
5. Factorial and combinatorics. Simplifying expressions.
6. Binomial expansion (find a specific term or expand a binomial).
7. Arithmetic or geometric sequences:
General term.
Sum of some terms.
Sum of all the terms (if possible).
8. Errors (absolute, relative).
9. Easy problem.
10. Funny, new, different problem (FNDP)
Zeno's paradox (Numberphile).
Do vampires exist today? (Futility Closet).
¿De dónde viene el número e? (Derivando)
A. Sentido numérico.
MATE.1.A.1. Sentido de las operaciones.
MATE.1.A.1.2 Estrategias para operar (suma, producto, cociente, potencia, radicación y logaritmo) con números reales y complejos: cálculo mental o escrito en los casos sencillos y con herramientas tecnológicas en los casos más complicados.
D. Sentido algebraico.
MATE.1.D.1. Patrones. Generalización de patrones en situaciones sencillas.
MATE.1.D.1.1. Generalización de patrones en situaciones sencillas.
MATE.1.D.5. Pensamiento computacional.
MATE.1.D.5.1 Formulación, resolución y análisis de problemas de la vida cotidiana y de la ciencia y la tecnología empleando herramientas o programas más adecuados.
MATE.1.D.5.2 Comparación de algoritmos alternativos para el mismo problema mediante el razonamiento lógico.
F. Sentido socioafectivo.
MATE.1.F.1. Creencias, actitudes y emociones.
MATE.1.F.1.2 Tratamiento del error, individual y colectivo, en el aula de matemáticas como elemento movilizador de saberes previos adquiridos y generador de oportunidades de aprendizaje en el aula de matemáticas.
MATE.1.F.2. Trabajo en equipo y toma de decisiones.
MATE.1.F.2.1 Reconocimiento y aceptación de diversos planteamientos en la resolución de problemas y tareas efectivas para el éxito en el aprendizaje de las matemáticas, transformando los enfoques de las y los demás en nuevas y mejoradas estrategias propias, mostrando empatía y respeto en el proceso.
5. Calcular el término general de una sucesión, monotonía y cota de la misma. CMCT.
1.3. Utiliza la notación numérica más adecuada a cada contexto y justifica su idoneidad.
1.4. Obtiene cotas de error y estimaciones en los cálculos aproximados que realiza valorando y justificando la necesidad de estrategias adecuadas para minimizarlas.