Cuando un electrón y un positrón se encuentran y se destruyen, dos fotones, A y B, parten en direcciones opuestas. Independientemente de la distancia que los separe, los dos fotones siguen correlacionados en el sentido de que determinadas propiedades deben tener valores opuestos. Si se mide A para la propiedad x, su paquete de ondas se colapsa y x adquiere el valor, digamos, +1, el valor correspondiente para B se sabe inmediatamente que es - 1, aun cuando no se haya medido B. Al medir A parece inferirse, de algún misterioso modo, el colapso del paquete de ondas de B "aun cuando A y B no guarden ninguna relación causal en absoluto".

Einstein pensó durante toda su vida que debían existir variables locales ocultas que explicaran racionalmente la aparente paradoja. Y sin embargo...

"Ninguna variable local oculta puede explicar las correlaciones que se dan en la paradoja EPR, lo que deja abierta la posibilidad, aun cuando las separen años luz, de que las partículas permanezcan conectadas por un nivel subcuántico no local que nadie conoce". (John S. Bell, 1965)

El físico John S. Bell demostró que lo que Einstein y sus colegas tomaron como paradoja podía demostrarse científicamente.

EL TEOREMA DE BELL

El Teorema de Bell prueba la conexión-correlación entre sistemas no relacionados causalmente. Bell aduce que mientras la separación en el tiempo o en el espacio son "reales" en ciertos contextos, dicha separación es "irreal" o carece de importancia en la mecánica cuántica.

Imagínese una fuente que emite dos corrientes de fotones (o rayos de luz, para entenderlo mejor), fotones que son interceptados por dos instrumentos: A y B