64.4 Rezumat și referințe

Rezumat

Acest capitol descrie tehnologia de asamblare robotică, incluzând asamblarea cu control al forței, asamblarea fără control al forței, asamblarea integrată cu viziune și controlul forței și asamblarea pe o linie de producție în mișcare. Aplicațiile industriale reale sunt folosite pentru a demonstra cum se implementează aceste tehnici în automatizarea producției. Deoarece există diferiți parametri de proces care sunt implicați în asamblarea robotică cu control al forței, sunt prezentate și metode de optimizare a parametrilor. Pașii privind optimizarea parametrilor sunt ilustrați prin utilizarea unui proces de asamblare a convertorului de cuplu. Deoarece tehnicile sunt demonstrate folosind exemple industriale, ele sunt oarecum gata să fie implementate în producție.

Referințe

ABB Inc., (2010) Robotics application manual – force control for assembly. ABB Automation Technologies BA, Robotics, SE-721 68, Vasteras

Baeten J, Schutter JD (2002) Hybrid vision/force control at corners in planar robotic-contour following. IEEE/ASME Trans Mechatronics 7(2):143–151

Baeten J, Bruyninckx H, Schutter JD (2002) Tool/camera configurations for eye-in-hand hybrid vision/force control. In: IEEE international conference on robotics and automation, Washington, DC, pp 1704–1709

Chang W, Wu C (2002) Integrated vision and force control of a 3-D OF planar surface. In: IEEE international conference on control applications, Glasgow, Scotland, pp 748–753

Chen H, Zhang G, Zhang H, Fuhlbrigge T (2007) Integrated robotic system for high precision assembly in a semi-structured environment. Assem Autom 27(3):247–252

Cho C, Kang S, Kim M, Song J-B (2005) Macro-micro manipulation with visual tracking and its application to wheel assembly. Int J Control Autom Syst 3(3):461–468

Glosser GD, Newman WS (1994) The implementation of a natural admittance controller on an industrial manipulator. In: Proceedings of the international conference on the IEEE robotics and automation, vol 2. San Diego, CA, pp 1209–1215

Gottschlich SN, Kak AC (1989) A dynamic approach to high-precision parts mating. IEEE Trans Syst Man Cybern 19(4):797–810

Gravel D (2007) Efficient method for optimization force controlled robotic assembly parameters. Presented at control and applications, 30 May–1 June

Gravel D, Newman WS (2001) Flexible robotic assembly efforts at Ford Motor Company. In: Proceedings of the 2001 I.E. international symposium on intelligent control, pp 173–182

Gravel D et al (2009) Objective metric study for DOE-based parameter optimization in robotic torque converter assembly. In: Proceeding of IEEE/RSJ international conference on intelligent robots and systems, St. Louis, MO, pp 3832–3827

Jo¨rg S, Langwald J, Stelter J, Hirzinger G, Natale C (2000) Flexible robot-assembly using a multisensory approach. In: Proceedings of the 2000 I.E. international conference on robotics and automation, ICRA, April 24–28, San Francisco, CA

Montgomery D (2005) Design and analysis of experiments, 6th edn. Wiley, Hoboken

Morris DM, Haber R, Newman MS (2001) Force guided assemblies using a novel parallel manipulator. In: Proceedings of IEEE international conference on robotics and automation, vol 1, Florida, USA, pp. 325–330

Morrow JD, Nelson BJ, Khosla PK (1995) Vision and force driven sensorimotor primitives for robotic assembly skills. In: Proceedings of the IEEE international conference on intelligent robots and systems (IROS-95)’, vol 3. Pittsburg, PA, pp 234–240

Nelson B, Morrow J, Khosla P (1995) Improved force control through visual servoing. In: American control conference, Seattle, Washington

Newman WS, Zhao Y, Pao YH (2001) Interpretation of force and moment signals for compliant peg-in-hole assembly. Proc IEEE Int Conf Robot Autom ICRA 1:571–576

Olsson T, Bengtsson J, Johansson R, Malm H (2002) Force control and visual servoing using planar surface identification. In: IEEE international conference on robotics and automation, Washington DC, pp 4211–4216

Shin IS, Nam SH, Yu HG, Roberts RG, Moon SB (2006) Conveyor visual tracking using robot vision. In: 2006 Florida conference on recent advances in robotics, FCRAR 2006, Miami, Florida

Siciliano B, Villani L (1999) Robot force control. Springer, New York

Turges RH, Laowattana S (1994) Passive assembly of non-axisymmetric rigid parts. In: Proceedings of the international conference on intelligent robots and systems 1994, Munich, vol 2, pp 1218–1225

voii Collani Y, Scheering C, Zhang J, Knoll A (1999) A neuro-fuzzy solution for integrated visual and force control. In: Proceeding of the IEEE international conference on multisensor fusion and integration for intelligent systems, Taipei, pp 135–140

Wang J et al (2008) Force control new technologies for new robotics applications. Presented at the 2008 I.E. international conference on technologies for practical robot applications, Woburn, 10–11 Nov 2008

Xiao D, Ghosh BK, Xi N, Tarn TJ (2000) Sensor-based hybrid position/force control of a robot manipulator in an uncelebrated environment. IEEE Trans Control Syst Technol 8(4):635–645

Xu Y, Paul RP (1990) A robot compliant wrist system for automated assembly. Proc IEEE Int Conf Robot Autom 3:1750–1755

Yoon Y, Park J, Kak AC (2006) A heterogeneous distributed visual servoing system for real-time robotic assembly applications. In: Proceedings of the international conference on robotics and automation, Orlando, Florida

Zhang H, Gan Z, Brogardh T, Wang J, Isaksson M (2004) Robotics technology in automotive powertrain assembly. ABB Review, Vol. 1, pp. 13–16

Zhang G et al (2007) Automated engine piston installation using industrial robots. Presented at the ICMA 2007, Harbin, 5–8 Aug 2007