1.5 Summary, References 

As is known, polymers or polymer composites have various applications. However, there is still a wide scope to explore various paths and ideas to improvement of properties like high-strength, light weight, high performance composites, and electronics to make more convenient, sophisticated, customized tools or products for future application. One of the ways to do this is by synthesizing/modifying polymers, reinforced fibers, functional fillers, and improving or inventing new techniques for making sophisticated products in the future.
For example, currently although there are various reinforcing materials, glass fibers and carbon fibers are used most in preparation of high performance polymercomposite, but CNT-filled polymers show potential applications due to improved properties, such as high-strength, light weight, and high performance composites; until now, there has not been much industrial successes showing their advantage over traditional carbon fibers. Because of their nanometer scale and high aspect ratio, CNTs usually form stabilized bundles due to van der Waals interactions, despite various methods such as melt processing, solution processing, and in-situ polymerization which are used to counter these problems. However, there are still opportunities and challenges to be found in order to improve dispersion and interfacial properties. The mechanical properties of CNT/polymer nanocomposites may be compromised between the carbon–carbon bond damage and the increased CNT-polymer interaction due to the CNT functionalization. Similarly, electrical conductivity of a CNT/polymer nanocomposite is determined by the negative effect of carbon–carbon bond damage and the positive effect of the improved CNT dispersion. In either case, the choice and control of tailored functionalization sites for chemical modification of CNTs are extremely necessary. It is also necessary to understand the mechanisms involved in the methods used to improve the properties of CNT/polymer composites. This will be helpful to select the appropriate polymers and CNTs as well as maximum adhesion at the CNT-polymer interfaces. Another problem associated with CNT is its high cost. It is one of the major hurdles to accept CNT as a generous reinforcing agent over traditionally existing reinforcing agents like carbon fiber and glass fiber. So, bringing down the manufacturing cost of CNT is one of the aspects toward wide industrial acceptance of CNT as a reinforcing agent.
Similar kinds of problems or challenges or scope for improvement are also present in other polymer composite systems for specific use. Other versatile valuable applications are found with block copolymers. They are exploited for applications in drug delivery, tissue engineering, cosmetics, water treatment, and industrial waste treatment. Block copolymer micelles are used in synthesis of metal or metal oxide nanoparticles which have shown special catalytic, magnetic, electrical, and optical properties.
The future trend of polymer or polymer composite is or will be decided by market needs or demand and current/future research progress.

References

Alexandridis P, Lindman BE (2000) Amphiphilic block copolymers: self-assembly and applications. Elsevier Science BV, Amsterdam

Allen C, Maysinger D, Eisenberg A (1999) Colloids Surf B Biointerfaces 16:3–27

Alok C, Gan LH, Hu X (2011) Macromol Chem Phys 212:813–820

Anderson JL, An Y-Z, Rubin Y, Foote CS (1994) J Am Chem Soc 116:9763–9764

Antonietti M, Wenz E, Bronstein L, Seregina M (1995) Adv Mater 7:1000–1005

Antonietti M, Th€unemann A, Wenz E (1996) Colloid Polym Sci 274:795–800

Bennett RD, Miller AC, Kohen NT, Hammond PT, Irvine DJ, Cohen RE (2005) Macromolecules 38:10728–10735

Billmeyer FW (2007) Textbook of polymer science. Wiley, Singapore

Biron M (2007) Thermoplastics and thermoplastic composites: technical information for plastics users. Elsevier Science

Boutorine AS, Tokuyama H, Takasugi M, Isobe H, Nakamura E, He´le`ne C (1994) Angewandte Chemie 106:2526–2529

Bradley G (1999) Polymer-filler interaction of kaolin clay filled nylon 6,6 composites: Gerard Bradley. University of Limerick

Braun CH, Richter TV, Schacher F, M€uller AHE, Crossland EJW, Ludwigs S (2010) Macromol Rapid Commun 31:729–734

Breuer O, Sundararaj U (2004) Polym Compos 25:630–645

Bronstein LM, Sidorov SN, Valetsky PM, Hartmann J, Co¨lfen H, Antonietti M (1999) Langmuir 15:6256–6262

Bronstein LM, Vamvakaki M, Kostylev M, Katsamanis V, Stein B, Anastasiadis SH (2005) Langmuir 21:9747–9755

Campo EA (2008) Industrial polymers. Hanser, Munich

Cao L, Manners I, Winnik MA (2002) Macromolecules 35:8258–8260

Chaurasia A (2012) PhD thesis, Nanyang Technological University, Singapore

Chaurasia A, Gan LH, Hu X (2011) Macromol Chem Phys 212:813–820

Chen LM, Hong Z, Li G, Yang Y (2009) Adv Mater 21:1434–1449

Diana FS, Lee S-H, Petroff PM, Kramer EJ (2003) Nano Lett 3:891–895

Discher DE, Eisenberg A (2002) Science 297:967–973

Ford WT, Nishioka T, McCleskey SC, Mourey TH, Kahol P (2000) Macromolecules 33:2413–2423

Forney MW, Poler JC (2011) Significantly enhanced single-walled carbon nanotube dispersion stability in mixed solvent systems. J Phys Chem C 115:10531–10536

Fo¨rster S, Antonietti M (1998) Adv Mater 10:195–217

Fried JR (1995) Polymer science and technology. Prentice Hall PTR, Englewood Cliffs

Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Compos Part B Eng 39:933–961

Geng Y, Liu MY, Li J, Shi XM, Kim JK (2008) Compos Part A Appl Sci Manuf 39:1876–1883

Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Science 263:1600–1603

Hadjichristidis N, Pispas S, Floudas G (2002) Block copolymers: synthetic strategies, physical properties, and applications. Wiley-Interscience, Hoboken

Heeder N, Shukla A, Chalivendra V, Yang S, Park K (2011) Electrical behavior of carbon nanotube reinforced epoxy under compression. In: Proulx T (ed) Dynamic behavior of materials, vol 1. Springer, New York, pp 361–368

Jain S, Bates FS (2003) Science 300:460–464

Jaramillo TF, Baeck S-H, Cuenya BR, McFarland EW (2003) J Am Chem Soc 125:7148–7149

Jeong B, Bae YH, Lee DS, Kim SW (1997) Nature 388:860–862

Jinnai H, Kaneko T, Nishioka H, Hasegawa H, Nishi T (2006) Chem Rec 6:267–274

Jones M-C, Ranger M, Leroux J-C (2003) Bioconjug Chem 14:774–781

Katz HS, Milewski JV (1978) Handbook of fillers and reinforcements for plastics. Van Nostrand Reinhold, New York

Kim DH, Kim SH, Lavery K, Russell TP (2004) Nano Lett 4:1841–1844

Klingelho¨fer S, Heitz W, Greiner A, Oestreich S, Fo¨rster S, Antonietti M (1997) J Am Chem Soc 119:10116–10120

Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF (1991) Science 254:1183–1185

Lavasanifar A, Samuel J, Kwon GS (2002) Adv Drug Deliv Rev 54:169–190

Lee HK, Kim YH, Park Y, Lee YJ, Gopalan AI, Lee KP, Choi SJ (2011) J Nanoelectron Opt 6: 357

Li X, Lau KHA, Kim DH, Knoll W (2005) Langmuir 21:5212–5217

Liu G, Yan X, Li Z, Zhou J, Duncan S (2003) J Am Chem Soc 125:14039–14045

Liu J, Lai L, Sahoo NG, Zhou W, Shen Z, Chan SW (2012) Aus J Chem 65:1213–1222

Loginova TP, Kabachii YA, Sidorov SN, Zhirov DN, Valetsky PM, Ezernitskaya MG, Dybrovina LV, Bragina TP, Lependina OL, Stein B et al (2004) Chem Mater 16:2369–2378

Lu Z, Liu G, Phillips H, Hill JM, Chang J, Kydd RA (2001) Nano Lett 1:683–687

Mark HF, Kroschwitz JI (1985) Encyclopedia of polymer science and engineering. Wiley, New York

Markovic Z, Trajkovic V (2008) Biomaterials 29:3561–3573

Mayer A, Mark J (1997) Colloid Polym Sci 275:333–340

Mehrotra S, Nigam A, Malhotra R (1997) Chem Commun 5:463–464

Mela P, Gorzolnik B, B€uckins M, Mourran A, Mayer J, Mo¨ller M (2007) Small 3:1368–1373

Moffitt M, McMahon L, Pessel V, Eisenberg A (1995) Chem Mater 7:1185–1192

Moffitt M, Vali H, Eisenberg A (1998) Chem Mater 10:1021–1028

Mo¨ller M, Spatz JP, Roescher A (1996) Adv Mater 8:337–340

Mylvaganam K, Zhang L (2007) Recent Pat Nanotechnol 1:59

Nojiri C, Okano T, Jacobs HA, Park KD, Mohammad SF, Olsen DB, Kim SW (1990) J Biomed Mater Res 24:1151–1171

Orfanopoulos M, Kambourakis S (1995) Tetrahedron Lett 36:435–438

Otsuka H, Nagasaki Y, Kataoka K (2003) Adv Drug Deliv Rev 55:403–419

Pang J, Xu G, Tan Y, He F (2010) Colloid Polym Sci 288:1665–1675

Penza M, Rossi R, Alvisi M, Cassano G, Serra E (2009) Sens Actuators B 140:176–184

Platonova O, Bronstein L, Solodovnikov S, Yanovskaya I, Obolonkova E, Valetsky P, Wenz E, Antonietti M (1997) Colloid Polym Sci 275:426–431

Po R, Maggini M, Camaioni N (2010) J Phys Chem C 114:695–706

Prato M (1997) J Mater Chem 7:1097–1109

Qiu L, Wu X, Jin Y (2009) Pharm Res 26:946–957

Raez J, Tomba JP, Manners I, Winnik MA (2003) J Am Chem Soc 125:9546–9547

Ravi P, Dai S, Meng Hong K, Tam KC, Gan LH (2005) Polymer 46:4714–4721

Riley T, Heald CR, Stolnik S, Garnett MC, Illum L, Davis SS, King SM, Heenan RK, Purkiss SC,

Barlow RJ et al (2003) Langmuir 19:8428–8435

Rosato DV (2004) Reinforced plastics handbook. Elsevier Science & Technology, Oxford

Rutnakornpituk M, Thompson MS, Harris LA, Farmer KE, Esker AR, Riffle JS, Connolly J, St.Pierre TG (2002) Polymer 43:2337–2348

Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Prog Polym Sci 35:837–867

Sahoo NG, Lin L (2012) Carbon Nanotube Reinforced Polymer Composites for Aerospace Application. In: Zhang S, Zhao D Aerospace Materials Handbook, Taylor and Francis Group, LLC

Sahoo NG, Pan Y, Li L, Chan SH (2012) Adv Mater 24:4203–4210

Saito R, Okamura S-i, Ishizu K (1993) Polymer 34:1189–1195

Sanchez-Gaytan BL, Cui W, Kim Y, Mendez-Polanco MA, Duncan TV, Fryd M, Wayland BB, Park S-J (2007) Angew Chem Int Ed 46:9235–9238

Sariciftci NS, Braun D, Zhang C, Srdanov VI, Heeger AJ, Stucky G, Wudl F (1993) Appl Phys Lett 62:585–587

Sary N, Richard F, Brochon C, Leclerc N, Le´veˆque P, Audinot JN, Berson S, Heiser T, Hadziioannou G, Mezzenga R (2010) Adv Mater 22:763–768

Seregina MV, Bronstein LM, Platonova OA, Chernyshov DM, Valetsky PM, Hartmann J, Wenz E, Antonietti M (1997) Chem Mater 9:923–931

Seymour RB (1990) Polymer composites. Taylor & Francis Group

Shen H, Zhang L, Eisenberg A (1999) J Am Chem Soc 121:2728–2740

Sidorov SN, Bronstein LM, Kabachii YA, Valetsky PM, Soo PL, Maysinger D, Eisenberg A (2004) Langmuir 20:3543–3550

Spatz JP, Herzog T, Mo¨ßmer S, Ziemann P, Mo¨ller M (1999a) Adv Mater 11:149–153

Spatz JP, Mo¨ssmer S, Hartmann C, Mo¨ller M, Herzog T, Krieger M, Boyen H-G, Ziemann P, Kabius B (1999b) Langmuir 16:407–415

Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Prog Polym Sci 35:357–401

Tang Y, Liu SY, Armes SP, Billingham NC (2003) Biomacromolecules 4:1636–1645 Underhill RS, Liu G (2000) Chem Mater 12:2082–2091

Visiongain (2012) The composites market 2012–2022: glass fibre, carbon fibre and aramid fibre report. http://www.visiongain.com/Press_Release/227/’Composites-market-to-be-worth-62-6bn-in-2012’-says-visiongain-report

Wang X-S, Arsenault A, Ozin GA, Winnik MA, Manners I (2003) J Am Chem Soc 125:12686–12687

Wudl F (1992) Acc Chem Res 25:157–161

Wudl F (2002) J Mater Chem 12:1959–1963

Yan X, Liu F, Li Z, Liu G (2001a) Macromolecules 34:9112–9116

Yan X, Liu G, Liu F, Tang BZ, Peng H, Pakhomov AB, Wong CY (2001b) Angew Chem Int Ed 40:3593–3596

Zhang L, Eisenberg A (1995) Science 268:1728–1731

Zhang Q, Remsen EE, Wooley KL (2000) J Am Chem Soc 122:3642–3651

Zhu CC, Xu Y, Liu YQ, Zhu DB (1997) J Org Chem 62:1996–2000

Zubarev ER, Xu J, Sayyad A, Gibson JD (2006) J Am Chem Soc 128:4958–4959