28.9 Rezumat, Referințe

Acest capitol a rezumat câteva aspecte importante din literatură privind procesele de prelucrare hibridă pentru a înțelege mecanismele proceselor hibride existente și capacitățile acestora. Procesele de prelucrare în general sunt clasificate în procese mecanice, termice, chimice și electrochimice pe baza mecanismului lor dominant de îndepărtare a materialului. În consecință, prelucrarea are loc atunci când energia furnizată este suficientă pentru a provoca deformare plastică, schimbare de fază sau dizolvare. Când există posibilitatea ca mecanismul dominant să obțină asistență copleșitoare sau chiar redusă de la unul sau mai multe dintre celelalte mecanisme, este posibil să se dezvolte un sistem hibrid. Acest lucru este evidențiat în următoarele exemple (Kozak și Rajurkar 2000):
This chapter has summarized some important aspects of the literature on hybrid machining processes to understand the mechanisms of existing hybrid processes and their capabilities. Machining processes in general are categorized into mechanical, thermal, chemical, and electrochemical processes based on their dominant material removal mechanism. Accordingly machining occurs when the energy supplied is sufficient to cause plastic deformation, phase change, or dissolution. When there is scope for the dominant mechanism to get overwhelming or even subdued assistance from one or more of the other mechanisms, it is possible to develop hybrid system. This is highlighted in the following examples (Kozak and Rajurkar 2000):

1. Asistență termică: Creșterea temperaturii ajută la accelerarea defecțiunii prin forfecare în tăierea mecanică și reacții cinetice în interacțiuni chimice/electrochimice.
2. Asistență mecanică: Îndepărtarea mecanică a straturilor subțiri de oxizi și alți compuși intensifică dizolvarea anodică. Cavitația și agitația generate de vibrațiile ultrasonice îmbunătățesc performanța proceselor EDM, ECM și LBM.
3. Asistență chimică/electrochimică: Schimbarea densității de dislocare și creșterea vitezei de dislocare datorită reducerii potențialului de suprafață cauzată de reacțiile chimice facilitează deformarea plastică. Generarea de bule de gaz în reacția electrochimică facilitează descărcările electrice. Oxidarea crește absorbția de radiație a metalelor și scade pragurile de densitate de radiație pentru topire și vaporizare în timpul prelucrării cu laser.
1. Thermal assistance: The temperature rise helps to accelerate the shear failure in mechanical cutting and kinetic reactions in chemical/electrochemical interactions.
2. Mechanical assistance: The mechanical removal of thin layers of oxides and other compounds intensifies the anodic dissolution. Cavitation and agitation generated by ultrasonic vibrations enhance the performance of EDM, ECM, and LBM processes.
3. Chemical/electrochemical assistance: Change of dislocation density and increase of dislocation velocity due to surface potential reduction caused by chemical reactions facilitate plastic deformation. Generation of gas bubbles in electrochemical reaction facilitates electrical discharges. Oxidation increases the radiation absorptivity of metals and decreases the radiation density thresholds for melting and vaporization during laser machining.

Rata de îndepărtare a materialului (MRR) într-un proces hibrid H format din combinația a două procese constitutive A și B poate fi exprimată prin QH= QA+QB+QAB unde QA este MRR datorat lui A, QB este MRR datorat lui B și QAB este efectul lor sinergetic care poate fi determinat din rezultatele experimentale. Semnificația lui QAB va ajuta la identificarea procesului de prelucrare hibrid viabil din punct de vedere economic. Modelele teoretice și ecuațiile de energie sunt disponibile în literatură pentru majoritatea proceselor. Cunoașterea semnificației lui QAB va fi utilă în dezvoltarea unui model global pentru procesul hibrid. Este obișnuit să existe doi sau trei constituenți, așa cum se arată în Tabelul 1. A fost dezvoltat și un proces hibrid cu până la patru constituenți, cum ar fi prelucrarea electrochimică asistată de abraziv magnetic. Cu toate acestea, complexul fizico-chimic, electric, termic, și interacțiunile mecanice asociate proceselor de prelucrare hibridă nu sunt încă pe deplin înțelese. Fezabilitatea proceselor marcate cu „?” în Tabelul 1 și motivele incompatibilității/absenței nu sunt clare. Mai multe probleme enumerate mai jos rămân nerezolvate.
Material removal rate (MRR) in a hybrid process H formed by the combination of two constituent processes A and B can be expressed by QH¼ QA+QB+QAB where QA is the MRR due to A, QB is MRR due to B, and QAB is their synergetic effect which can be determined from the experimental results. The significance of QAB will help to identify economically viable hybrid machining process. Theoretical models and energy equations are available in literature for most of the processes. Knowing the significance of QAB will be useful in the development of global model for the hybrid process. It is common to have two or three constituents as shown in Table 1. Hybrid process with as many as four constituents such as magnetic abrasive-assisted electrochemical machining has also been developed. However, the complex physicochemical, electrical, thermal, and mechanical interactions associated with hybrid machining processes are yet to be fully understood. The feasibility of processes marked “?” in Table 1 and the reasons for the incompatibility/absence are not clear. Several issues as listed below remain unresolved.

De exemplu:

1. Există vreo limită tehnică sau economică a numărului de componente în procesul de prelucrare hibridă?
2. Numărul de constituenți modifică mecanismul de interacțiune/eficiența constituenților individuali? Dacă da, atunci de ce? Cum?
3. Cum se identifică compatibilitatea (sau incompatibilitatea) proceselor constitutive pentru a obține efectele lor sinergice?

Potențialul de investigare constă în continuare în modelarea matematică a diferitelor procese hibride pentru evaluarea efectelor diferiților parametri de intrare asupra calității prelucrării. Acest lucru va îmbunătăți și mai mult aplicațiile industriale ale tehnologiilor hibride.

For example:
1. Is there any technical or economic limit on number of constituents in hybrid machining process?
2. Does the number of constituents change the interacting mechanism/efficiency of individual constituents? If yes, then why? How?
3. How to identify the compatibility (or incompatibility) of constituent processes to reap their synergetic effects?

Potential for investigation lies further in mathematical modeling of different hybrid processes for evaluating effects of various input parameters on machining quality. This will further enhance industrial applications of hybrid technologies.

Referințe

Aspinwall DK et al (2001) Hybrid high speed machining (HSM): system design and experimental results for grinding/HSM and EDM/HSM. Ann CIRP 50(1):145–148

Basak I, Ghosh A (1996) Mechanism of spark generation during electrochemical discharge machining: a theoretical model and experimental verification. J Mater Process Technol 62 (1–3):46–53

Basak I, Ghosh A (1997) Mechanism of material removal in electrochemical discharge machining: a theoretical model and experimental verification. J Mater Process Technol 71(3):350–359

Bhattacharyya B, Doloi BN, Sorkhel SK (1999) Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials. J Mater Process Technol 95(1–3):145–154

Brehl DE, Dow TA (2008) Review of vibration-assisted machining. Precis Eng 32(3):153–172

Cao XD, Kim BH, Chu CN (2009) Micro-structuring of glass with features less than 100 μm by electrochemical discharge machining. Precis Eng 33(4):459–465

Cook NH, Foote GB, Jordan P, Kalyani BN (1973) Experimental studies in electro-machining. Trans ASME J Eng Indus 95(4):945–950

Curodeau A et al (2008) Ultrasonic abrasive μ-machining with thermoplastic tooling. Int J Mach Tool Manuf 48(14):1553–1561

Curtis DT et al (2009) Electrochemical superabrasive machining of a nickel-based aeroengine alloy using mounted grinding points. CIRP Ann Manuf Technol 58(1):173–176

Dabrowski L, Marciniak M, Szewczyk T (2006) Analysis of abrasive flow machining with an electrochemical process aid. J Eng Manuf 220(3):397–403

De Silva AKM et al (2011) Thermal effects in laser assisted jet electrochemical machining. CIRP Ann Manuf Technol 60(1):243–246

Endo T, Tsujimoto T, Mitsui K (2008) Study of vibration-assisted micro-EDM – the effect of vibration on machining time and stability of discharge. Precis Eng 32(4):269–277

Huang H et al (2003) Ultrasonic vibration assisted electro-discharge machining of microholes in Nitinol. J Micromech Microeng 13(5):693

Hur J et al (2002) Hybrid rapid prototyping system using machining and deposition. CAD Comput Aid Des 34(10):741–754

Jain VK, Chak SK (2000) Electrochemical spark trepanning of alumina and quartz. Mach Sci Technol 4(2):277–290

Jain VK, Rao PS, Choudhury SK, Rajurkar KP (1991) Experimental investigations into travelling wire electrochemical spark machining (TW-ECSM) of composites. J Eng Ind 113:75–84

Jain VK, Choudhury SK, Ramesh KM (2002) On the machining of alumina and glass. Int J Mach Tool Manuf 42(11):1269–1276

Jui SK, Kamaraj AB, Sundaram MM (2013) Fabrication of high aspect ratio micro holes in glass by micro electrochemical discharge machining. Submitted to NAMRI/SME, vol 41

Kasashima N, Kurita T (2012) Laser and electrochemical complex machining of micro-stent with on-machine three-dimensional measurement. Opt Lasers Eng 50(3):354–358

Kim J-D, Choi M-S (1995) Simulation for the prediction of surface-accuracy in magnetic abrasive machining. J Mater Process Technol 53(3–4):630–642

Kim S et al (2010) Hybrid micromachining using a nanosecond pulsed laser and micro EDM. J Micromech Microeng 20:015037

Knights M (2005) Hybrid prototyping process combines casting and machining. Plast Technol 51 (10):45–51

Komanduri R, Lucca DA, Tani Y (1997) Technological advances in fine abrasive processes. Ann CIRP 46(2):545–596

Kozak J (1996) The analysis of the interactions of mechanical abrasion and electrochemical dissolution processes in AECG. In: Proceedings of the 19th Science Symposium on Abrasive Machining, Ło´dz´, pp 275–282 (in Polish)

Kozak J, Oczos KE (2001) Selected problems of abrasive hybrid machining. J Mater Process Technol 109(3):360–366

Kozak J, Rajurkar KP (2000) Hybrid machining processes evaluation and development. In: Proceedings of the second international conference on machining and measurements of sculptured surfaces, Krako´w, Poland, pp 501–536

Kuo C-L, Huang J-D, Liang H-Y (2003) Fabrication of 3D metal microstructures using a hybrid process of micro-EDM and laser assembly. Int J Adv Manuf Technol 21(10–11): 796–800

Kurita T, Watanabe S, Hattori M (2001) Development of hybrid micro machine tool. In: Proceedings of the second international symposium on environmentally conscious design and inverse manufacturing, Krako´w, Poland, pp 797–802

Lauwers B (2011) Surface integrity in hybrid machining processes. Proc Eng 19:241–251

Lee SJ (2005) Micro/meso-scale shapes machining by micro EDM process. Int J Kor Soc Precis Eng 6(2):5–11

Lim H, Kumar AS, Rahman M (2002) Improvement of form accuracy in hybrid machining of microstructures. J Electron Mater 31(10):1032–1038

Liu HS et al (2006) Application of micro-EDM combined with high-frequency dither grinding to micro-hole machining. Int J Mach Tool Manuf 46(1):80–87

McGeough JA (2002) Micromachining of engineering materials. Marcel Dekker, New York, 397

Mediliyegedara TKKR et al (2005) New developments in the process control of the hybrid electrochemical discharge machining (ECDM) process. J Mater Process Technol 167:338–343

Mognol P et al (2006) High speed milling, electro discharge machining and direct metal laser sintering: a method to optimize these processes in hybrid rapid tooling. Int J Adv Manuf Technol 29(1–2):35–40

Murti V, Philip P (1987) An analysis of the debris in ultrasonic-assisted electrical discharge machining. Wear 117(2):241–250

Pa PS (2007) Electrode form design of large holes of die material in ultrasonic electrochemical finishing. J Mater Process Technol 192–193:470–477

Pa PS (2009) Super finishing with ultrasonic and magnetic assistance in electrochemical micromachining. Electrochim Acta 54(25):6022–6027

Pajak PT et al (2006) Precision and efficiency of laser assisted jet electrochemical machining. Precis Eng 30(3):288–298

Radhakrishnan G et al (2003) Hybrid pulsed laser deposition and Si-surface-micromachining process for integrated TiC coatings in moving MEMS. Appl Phys Mater Sci Process 77 (2):175–184

Rajurkar KP et al (2006) Micro and nano machining by electro-physical and chemical processes. Ann CIRP 55(2):643–666

Reyntjens S, Puers R (2001) A review of focused ion beam applications in microsystem technology. J Micromech Microeng 11(4):287–300

Schuh G, Kreysa J, Orilski S (2009) Roadmap “Hybride Produktion”–Wie 1+ 1¼ 3-Effekte in der Produktion maximiert werden ko¨nnen. ZWF – Zeitschrift f€ur wirtschaftlichen Fabrikbetrieb 104(5):385–391

Shabgard M, Sadizadeh B, Kakoulvand H (2009) The effect of ultrasonic vibration of work-piece in electrical discharge machining of AISIH13 tool steel. World Acad Sci Eng Technol 52:392–396

Skoczypiec S (2011) Research on ultrasonically assisted electrochemical machining process. Int J Adv Manuf Technol 52(5):565–574

Sommer C (2000) Non-traditional machining handbook. Advance Pub, Houston, 432

Srivastava V, Pandey PM (2012) Effect of process parameters on the performances of EDM process with ultrasonic assisted cryogenically cooled electrode. J Manuf Processes 14:393–402

Stephen A, Vollertsen F (2010) Mechanisms and processing limits in laser thermochemical machining. CIRP Ann Manuf Technol 59(1):251–254

Sugioka K et al (2002) Microprocessing of glass by hybrid laser processing. Proc SPIE 4760 (I):230–238

Sundaram M, Pavalarajan G, Rajurkar K (2008) A study on process parameters of ultrasonic assisted micro EDM based on Taguchi method. J Mater Eng Perform 17(2):210–215

Tandon S et al (1990) Investigations into machining of composites. Precis Eng 12(4):227–238

Tong H, Li Y, Wang Y (2008) Experimental research on vibration assisted EDM of microstructures with non-circular cross-section. J Mater Process Technol 208(1–3):289–298

Wang X, Ying B, LiuW(1996) EDM dressing of fine grain super abrasive grinding wheel. J Mater Process Technol 62(4):299–302

Wang ZY et al (2003) Hybrid machining of Inconel 718. Int J Mach Tool Manuf 43 (13):1391–1396

Wang W et al (2011) Abrasive electrochemical multi-wire slicing of solar silicon ingots into wafers. CIRP Ann Manuf Technol 60(1):255–258

W€uthrich R, Fascio V (2005) Machining of non-conducting materials using electrochemical discharge phenomenon – an overview. Int J Mach Tool Manuf 45(9):1095–1108

Yan BH et al (2002) Study of precision micro-holes in borosilicate glass using micro EDM combined with micro ultrasonic vibration machining. Int J Mach Tool Manuf 42 (10):1105–1112

Yang I, Park MS, Chu CN (2009) Micro ECM with ultrasonic vibrations using a semi-cylindrical tool. Int J Precis Eng Manuf 10(2):5–10

Yeo SH, Murali M, Cheah HT (2004) Magnetic field assisted micro electro-discharge machining. J Micromech Microeng 14(11):1526–1529

Zheng Z-P et al (2007) 3D microstructuring of Pyrex glass using the electrochemical discharge machining process. J Micromech Microeng 17(5):960

Zhu D et al (2011) Precision machining of small holes by the hybrid process of electrochemical removal and grinding. CIRP Ann Manuf Technol 60(1):247–250