62.8 Rezumat și Referințe

Rezumat

Dezvoltarea unui manipulator conform, care este articulat prin articulații interspațiale, implică o bună înțelegere a mai multor subiecte fundamentale asociate cu acest sistem robotic avansat. Știința materialelor joacă un rol important în dezvoltarea unui manipulator conform fiabil. Identificarea exactă a duratei de viață la oboseală a acestor articulații interspațiale este crucială, deoarece variază în funcție de tipurile de materiale, finisarea suprafeței, geometrii și încărcări. Proprietățile materialului afectează, de asemenea, nivelul de solicitare pe care îl poate suporta fiecare articulație interspațială sub încărcare, încovoiere și încovoiere de torsiune. Deși proprietățile de modul Young mai mic vor reduce rigiditatea la încovoiere și, prin urmare, solicitările, manipulatoarele conforme pot pierde rigiditatea dorită în direcțiile neacționante. Prin urmare, provocarea majoră în proiectarea unui manipulator conform este de a îndeplini funcțiile dorite și spațiul de lucru de deflectare, menținând în același timp solicitările mult sub limita de curgere a materialului.

Mecanica solidului oferă instrumente analitice importante pentru modelarea rigidității la deflectare a articulațiilor interspațiale. Ecuația clasică de încovoiere-moment-curbură a adus câteva formulări cheie în prezicerea rigidității și a solicitărilor mecanismelor funcționale conforme, în timp ce teorema deflecției mari acoperă caracteristicile neliniare ale articulațiilor interspațiale. Progresul în studiile teoretice asupra caracteristicii de deflecție mare au dat naștere modelului de aproximare a corpului pseudo-rigid, care a devenit, de asemenea, puntea de legătură între mecanismul clasic de legătură cu corp rigid și mecanismul conform. Acest model a fost îmbunătățit și mai mult de modelul de aproximare semi-analitică, care oferă o soluție simplă, rapidă și generică pentru orice formă de configurație de articulație interspațială. Cu aceste modele de aproximare, cunoașterea mecanismului de legătură cu corp-rigid, în special arhitecturile cinematice paralele, pot fi aplicate în sintetizarea mecanismului conform. Sinteza mecanismului conform poate fi realizată și prin abordarea clasică de proiectare cu constrângeri exacte și prin tehnicile de optimizare topologică de ultimă generație. Mecanismul compatibil sintetizat trebuie să fie antrenat de dispozitive de acţionare pentru a forma un manipulator conform. Actuatoarele vor decide în cele din urmă intervalul de deplasare, forța de ieșire, rigiditatea și chiar dimensiunea sau amprenta la sol a manipulatorului. Însă, senzorii de înaltă rezoluție vor defini rezoluția în trepte a manipulatorului. Cu cunoștințele relevante despre fiecare subiect fundamental fiind acoperite în acest capitol, acesta servește ca ghid și referință pentru proiectarea, analizarea și dezvoltarea unui manipulator conform.

Referințe

Bacher JP (2003) Conception de robots de tre`s haute precision á articulation flexibles: interaction dynamique-commande. PhD thesis, Ecole Polytechnique Fdrale de Lausanne (EPFL) (No 2907)

Becker P, Seyfried P, Siegert H (1987) Rev Sci Instrum 58(2):207

BEI Kimco Magnetics (2014) Linear voice coil actuators. Online: BEI Kimco Magnetics website, http://www.beikimco.com/

Bellouard Y, Clavel R (2004) Mater Sci Eng A 378, pp 210–215

Bendsoe MP (1989) Struct Optim 1, pp 193–202

Bendsoe MP, Kikuchi N (1988) Comput Methods Appl Mech Eng 71, pp 197–224

Bendsoe MP, Sigmund O (1999) Arch Appl Mech 69, pp 635–654

Bendsoe MP, Aharon BT, Jochem Z (1994) Struct Optim 7(3):141

Blanding DL (1992) Principles of exact constraint mechanical design. Eastman Kodak, Rochester

Boone BG, Bokulic RS, Andrewsa GB, McNutt JR, Dagalakisb N (2002) Optical and microwave communications system conceptual design for a realistic interstellar explorer. In: SPIE international society of optical engineering, Jun, Bellingham, Whatcom County, USA, pp 225–236

Borovic B, Lewis FL, Liu AQ, Kolesar ES, Popa D (2006) J Micromech Microeng 16, pp 1233–1241

Brennen RA, Lim MG, Pisano AP, Chou AT (1990) Large displacement linear actuator. In: 4th Technical Digest., IEEE Solid-State Sensor and Actuator Workshop, 4–7 Jun, Hilton Head Island, South Carolina, USA, pp 135–139

Byrd PF, Fredman MD (1954) Handbook of elliptic integrals for engineers and physicists. Springer, Berlin

Canfield SL, Beard JW, Lobontiu N, O’Malley E, Samuelson M, Paine J (2002) Int J Robot Autom 17:63

Chapman C, Jakiela M (1996) ASME J Mech Des 118(1):89

Chen SC, Culpepper ML (2006) Precis Eng 30:314

Chen KS, Trumper DL, Smith ST (2002) Precis Eng 26:355

Chiou JC, Lin YJ (2005) J Micromech Microeng 15, pp 1641–1648

Chu DN, Xie YM, Hira A, Steven GP (1997) Finite Elem Anal Des 24, pp 191–212

Comtois JH, Bright VM (1996) Surface micromachined polysilicon thermal actuator arrays and applications. In: Sold-state sensor and actuator workshop, 2–6 Jun, Hilton Head, South Carolina, USA, pp 242–253

Comtois JH, Bright VM (1997) Sensors and Actuators A 58, pp 19–25

Culpepper ML, Anderson G (2004) Precis Eng 28:469

Deslattes RD (1969) Appl Phys Lett 15(11):386

Dong L, Arai F, Fukuda T (2000) 3D Nanorobotic Manipulation of Nano-order Objects inside SEM. In: 2000 International symposium on micromechatronics and human science, 22–25 Oct, Nagoya Congress Center and Nagoya Municipal Industrial Research Institute, Japan, pp 151–156

Dowling NE (1993) Mechanical behavior of materials. Prentice Hall, Upper Saddle River

Fite K, Goldfarb M (1999) In: 1999 I.E. international conference on robotics and automation, Detroit, pp 2122–2127

Forrest PG (1962) Fatigue of metals. Pergamon Press, Elmsford

Frisch FR (1962) Flexible bars. Butterworth, Washington, DC

Fukada S, Nishimura K (2007) Int J Precis Eng Manuf 8:49

Gao P, Swei SM, Yuan Z (1999) Nanotechnology 10:394 H2W Technologies (2014) Voice coil linear actuators. Online: H2W Technologies website, http://www.h2wtech.com/ Haberland R (1978) In: Symposium on gyroscope technology, Deutsche Gesellschaft fuer Ortung und Navigation, Duesseldorf/Bochum, pp 18–19

Hale LC (1999) Principles and techniques for designing precision machines. PhD thesis, Massachusetts Institute of Technology (MIT)

Han CS, Hudgens JC, Tesar D, Traver A (1991) In: 1991 IEEE/RSJ international conference on intelligent robots and systems, Osaka, pp 1153–1162

Helmer P (2006) Conception systmatique de structures cinmatiques orthogonales pour la microrobotique. PhD thesis, Ecole Polytechnique Fdrale de Lausanne (EPFL) (No 3365)

Heidenhain (2014) Optical sensor. Online: Heidenhain Corporation website, http://www.heidenhain.com/Henein S (2000) Conception des structures articules guidages flexibles de haute prcision. PhD thesis, Ecole Polytechnique Fdrale de Lausanne (EPFL) (No 2194)

Henein S (2006) Flexure-based mechanism for high precision. In: Technical tutorial notes of 6th International conference of the European society for precision engineering & nanotechnology, May, Vienna, Austria, pp 32–37

HEPHAIST S (2014) Spherical rolling joint SRJ series. Online: Hephaist Sekio website, http://www.hephaist.co.jp/e/

Her I, Chang JC (1994) In: 23rd ASME biennial mechanisms conference on machine elements and machine dynamics, pp 517–525

Hesselbach J, Pittschellis R, Hornbogen E, Mertmann M (1997) Shape memory alloys for use in miniature grippers. In: 2nd International Conference on Shape Memory and Superelastic Technologies, 2–6 Mar, Pacific Grove, California, USA, pp 251–256

Ho HL, Yang GL, LinW (2004) In: 2003/2004 international conference on precision engineering, Singapore, pp 133–140

Howell LL (2001) Compliant mechanism. Wiley, New York

Howell LL, Midha A (1994) ASME J Mech Des 116:280

Howell LL, Midha A, Norton TW (1996) ASME J Mech Des 118:126

Hudgens JC, TesarDA (1988) In: 20th biennial ASME mechanisms conference, Kissimmee, pp 29–37

Hung ES, Senturia SD (1999) J Micromech Syst 8, pp 497–505

Jones RV (1951) J Sci Instrum 28(2):38

Jones RV (1952) J Sci Instrum 29:345

Jones RV (1955) J Sci Instrum 33(6):245

Jones RV (1956) J Sci Instrum 33(7):279

Jones RV (1962) J Sci Instrum 39:193

Jones RV (1988) Instruments and experiences; papers on measurement and instrument design. Wiley, Chichester/New York

Juvinall RC (1967) Stress, strain, and strength. McGraw-Hill, New York

Jywe WY, Jeng YR, Liu CH, Teng YF, Wu CH, Wang HS, Chen YJ (2008) Precis Eng 32(4):239

Kimball LW, Tsai DD, Maloney J (2000) In: 2000 ASME design engineering technical conferences, Baltimore, pp DETC00/MECH-14,116

Lee CW, Kim SW (1997) Precis Eng 21:113

Lion Precision (2014) Capacitive sensor. Online: Lion Precision website, http://www.lionprecision.com/

Liu L, Tan KK, Chen S, Teo CS, Lee TH (2013) IEEE Trans Ind Inform 9(2):859

Lobontiu N (1962) Compliant mechanisms: design of flexure hinges. CRC Press, Boca Raton

Lobontiu N, Paine JSN, O’Malley E, Samuelson M (2002) Precis Eng 26:183

Lobontiu N, Garcia E, Hardau M, Bal N (2004) Rev Sci Instrum 75:4896

Lum GZ, Teo TJ, Yang GL, Yeo SH, Sitti M (2013) In: IEEE/ASME international conference on advanced intelligent mechatronics, Wollongong, vol 1, pp 247–254

Mamin HJ, Abraham DW, Ganz E, Clark J (1985) Rev Sci Instrum 56:2168

Marin J (1962) Mechanical behavior of engineering materials. Prentice Hall, Upper Saddle River

Mclnroy JE, Hamann JC (2000) IEEE Trans Robot Autom 16:372

Mclnroy JE, O’Brien JF, Neat GW (1999) IEEE/ASME Trans Mech 4:91

Merlet JR (2000) Parallel robot. Kluwer Academic, Dordrecht

Motsinger RN (1964) In: Stein PK (ed) Measurement engineering. Stein Engineering Services, Phoenix, chap. 11

Mukhopadhyay D, Dong J, Pengwang E, Ferreira P (2008) A SOI-MEMS-based 3-DOF planar parallel-kinematics nanopositioning stage. Sensors and Actuators A, 147, pp 340–351

Nishimura K (1991) Rev Sci Instrum 62(8):2004

Norton R (2000) Machine design, an integrated approach. Prentice Hall, Upper Saddle River

Oiwa T, Hirano M (1999) Jpn Soc Precis Eng 65:1425

Ouyang PR, Tjiptoprodjo RC, Zhang WJ, Yang GS (2008) Int J Adv Manuf Technol 38(5–6):463

Paros JM, Weisbord L (1965) How to design flexure hinges, Mach Des 37:151–156

Pham HH, Chen IM (2005) Precis Eng 29(4):467

Physik Instrumente GmbH, (2014) PICMA stack multilayer piezo actuators. Online: Physik Instrumente website, http://www.piceramic.com/index.php

Portman VT, Sandler BZ, Zahavi E (2000) IEEE Trans Robot Autom 16:629

Qiu J, Lang JH, Slocum AH, Strumpler R (2003) A high-current electrothermal bistable MEMS relay. In: IEEE 16th annual international conference on micro electro mechanical systems, 19–23 Jan, Kyoto, Japan, pp 64–67

Reynaerts D, Peirs J, Brussel HV (1995) J Micromech Microeng 5, pp 150–152

Rosa MA, Dimitrijev S, Harrison HB (1998) Electron Lett 34, pp 1787–1788

Rozvany GIN (1976) Optimal design of flexural systems. Pergamon, Oxford

Rozvany GIN (1995) Structural design via optimality criteria. Kluwer, Dordrecht

Ryu JW, Gweon DG, Moon KS (1997) Precis Eng 21:18

Seugling RM, LeBrun T, Smith ST, Howard LP (2002) Rev Sci Instrum 73:2462

Shigley JE, Mischke CR (2001) Mechanical engineering design, 6th edn. McGraw-Hill, New York

Shigley JE, Mitchell LD (1983) Mechanical engineering design, 4th edn. McGraw-Hill, New York

SIOS (2014) Laser interferometry sensor. Online: SIOS GmbH website, http://www.sios.de/englisch/vertret_e.htm

Slocum AH (1992) Precision machine design. Prentice Hall, Englewood Cliff

Smith ST (2000) Flexure: elements of elastic mechanisms. Gordon and Breach Science Publishers, London

Smith ST, Chetwynd DG, Bowen DK (1987) J Phys E Sci Instrum 20:977

Speich J, Goldfarb M (2000) Robotica 18:95

Stroman RO (2006) Actuator trade-off analysis for darpa/boss prototype. Memorandum report, Naval Research Lab, Chemical Dynamics and Diagnostics Brach, Washington, DC

Sun Y, Piyabongkarn D, Sezen A, Nelson BJ, Rajamani R, Schoch R, Potasek DP (2002) In: 2002 IEEE/RSJ international conference on intelligence robots and systems, EPFL, Lausanne, pp 1796–1801

Tai K, Akhtar S (2005) Struct Multidiscip Optim 30(2):113

Tan KK, Lee TH, Zhou HX (2001) IEEE/ASME Trans Mechatron 6:428

Tang WC, Chong TU, Nguyen H, Howe RT (1989) Sens Actuat 20, pp 25–32

Teo TJ, Chen IM, Yang GL, Lin W (2008) Nanotechnology 19:315501

Teo TJ, Yang GL, LinW(2010) A 3-DOF spatial-motion flexure-based parallel nano-manipulator with large workspace and high payload for UV nanoimprint lithography application. In: 10th international conference of European society for precision engineering and nanotechnology, May, Delft, Netherland, pp 360–363

Teo TJ, Chen IM, Yang GL, Lin W (2010b) Precis Eng 34(3):607

Teo TJ, Lum GZ, Yang GL, Yeo SH, Sitti M (2013) In: 13th international conference of European society for precision engineering and nanotechnology, vol 1, Berlin

Toshiyoshi H, Fujita H (1996) J Micromech Syst 5(4):231

Tsai LW (1999) Robot analysis: the mechanics of serial and parallel manipulators. Wiley, New York

Tseytlin YM (2002) Rev Sci Instrum 73:3363

Tsou C, Lin WT, Fan CC, Chou BCS (2005) J Micromech Microeng 15, pp 855–860

Tuttle SB (1967) Mechanisms for engineering design. Wiley, New York, chap. 8

Wang SC, Hikita HKH, Zhao YS, Huang Z, Ifukube T (2003a) Mech Mach Theory 38:439

Wang MY, Wang X, Guo D (2003) Comput Methods Appl Mech Eng 192, pp 227–246

Xie YM, Steven GP (1993) Comput Struct 49, pp 885–896

Xu W, King T (1996) Precis Eng 19:4

Yang GL, Teo TJ, Lin W, Kiew CM, Ho HL (2008) A flexure-based planar motion parallel nanopositioner with partially decoupled kinematic architecture. In: 8th international conference of European society for precision engineering and nanotechnology, May, Zurich, Switzerland, pp 160–165

Yang GL, Teo TJ, Chen IM, Lin W (2011) In: 2011 I.E. international conference on robotics and automation, Shanghai, pp 2751–2756

Yi BJ, Chung GB, Na HY, Kim WK, Suh IH (2003) IEEE Trans Robot Autom 19:604–612

Yong YK, Lu TF (2009) Mech Mach Theory 44:1156

Yong YK, Lu TF, Handley DC (2008) Precis Eng 32(2):63

Zhang B, Zhu Z (1997) IEEE/ASME Trans Mechatron 2:22

Zhu Y, Corigliano A, Espinosa HD (2006) J Micromech Microeng 16, pp 242–253

Zuo L, Landsiedel N, Prakash M, Kartik M (2003) Design of six-axis nano-manipulator based on compliant mechanism. Technical report, Massachusetts Institute of Technology (MIT)