55.3 Rezumat și referințe

În acest capitol au fost introduse o serie de variate actuatoare și s-a încercat să evidențieze avantajele utilizării unei anumite clase de actuatoare pentru o anumită aplicație. Mai mult, a fost raportată o scurtă discuție asupra limitărilor fiecărei tehnologii de acționare, pentru a permite cititorului să vizualizeze spectrul posibilelor aplicații și performanțe. Rezultă oricum clar că acționarea electromecanică reprezintă încă cea mai răspândită soluție pentru industrie și robotică. Motivația principală se află în cunoașterea convingătoare a legilor electromagnetismului și a teoriei controlului, care se bazează în principal pe ipoteze teoretice având în vedere un actuator electromecanic în buclă. În plus, este de menționat că raportul putere-greutate al unui motor DC este adesea potrivit pentru majoritatea aplicațiilor din etajele de automatizare și control și că electronica reprezintă în prezent stadiul de ultimă oră. Dar, acest studiu a încercat să ofere cititorului și alte descrieri ale unor clase neconvenționale de actuatoare: dacă, pe de o parte, utilizarea aliajelor cu memorie de formă și a arhitecturii polimerice reprezintă încă o nișă, principiul de acționare bazat pe material piezoelectric este în prezent cea mai bună soluție pentru micromanipulare și acționare. În plus, introducerea tehnologiei de acționare conformă își propune să ilustreze o nouă tendință în robotică care apare treptat și conduce robotica în sine către utilizarea structurii flexibile pentru a crește dexteritatea manipulării și a imita eficiența în interacțiunea sistemelor biologice.

Referințe

Advanced Materials and Technologies n.v. Properties of shape memory alloys. Industrieweg 43B–3540 Herk-de-Stad, Belgium

Albu-Schaffer A, Ott CH, Hirzinger G (2007) A unified passivity based control framework for position, torque and impedance control of flexible joint robots. Int J Robotics Res 26(1):23–39

Ballas RG (2007) Piezoelectric multilayer beam bending actuators: static and dynamic behavior and aspect of sensor integration. Microtechnology and MEMS. Springer, Berlin

Beaty HW, Kirtley JL (1998) Electric machines handbook. McGraw-Hill, New York

Bidaux J-E, Yu WJ, Gotthardt R, Manson J-A (1994) Modelling of the martensitic transformation in shape memory alloy composites. In: Proceedings of the 3rd European symposium on martensitic transformations, Barcelona, 14, 16 Sept 1994

Brissaud M (1991) Characterization of piezoceramics. IEEE Trans Ultrason Ferroelectr Freq Control 38(6):603–617

Brunell R (1979) Hydraulic and pneumatic cylinders. Trade & Technical, Morden

Caldwell DG (1990) Pseudomuscular actuator for use in dexterous manipulation. Med Biol Eng Comput 28:595–600

Canay IM (1993) Modelling of alternating-current machines having multiple rotor circuits. IEEE Trans Energy Convers 8(2):280–296

Chiarelli P, Genuini G, De Rossi D (1987) Electromechanically driven muscle-like actuators. In: Proceedings of the IEEE conference engineering in medicine and biology, pp 1089–1091

Chou C-P, Hannaford B (1996) Measurement and modeling of mckibben pneumatic artificial muscles. IEEE Trans Robot Autom 12(1):90–102

Dario P, Valleggi R, Pardini M, Sabatini A (1991) A miniature device for medical intracavity intervention. In: Proceedings of the IEEE workshop on micro electro mechanical system, Nara, Jan 30 Feb 2, 1991, pp 171–175

De Luca A, BookW(2008) Robots with flexible elements. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Berlin, pp 287–317

De Luca A, Lucibello P (1998) A general algorithm for dynamic feedback linearization of robots with elastic joints. In: 1998 I.E. international conference on robotics and automation, Leuven, B, pp 504–510

De Rossi D, Chiarelli P, Buzzigoli G, Domenici C, Lazzeri L (1986) Contractile behavior of electrically activated mechanochemical polymer actuators. Trans Am Soc Artif Intern Org 32:157–162

Duerig TW (1990) Engineering aspects of shape memory alloys. Butterworth, London English C, Russell D (1999) Mechanics and stiffness limitations of a variable stiffness actuator for use in prosthetic limbs. Mech Mach Theor 34(1):7–25

Greenwood DC (1965) Manual of electromechanical devices. McGraw-Hill, New York

Hannaford B, Winters J (1990) Actuator properties and movement control: biological and technological models. In: Winters JM, Woo SLY (eds) Musliple muscle systems: biomechanics and movement organization. Springer, New York, pp 101–120

Heinemann. Dynalloy, Inc. Flexinol Actuator Wires. 18662 MacArthur Blvd., Suite103, Irvine 92715

Hollander K, Sugar T (2004) Concepts for compliant actuation in wearable robotic systems. In: Proceedings of the US-Korea conference science, technology and entrepreneurship (UKC’04), vol 128, pp 644–650

Hollerbach JM, Hunter IW, Ballantyne J (1992) A comparative analysis of actuator technologies for robotics. In: Khatib O, Craig J, Lozano-Perez T (eds) Robotics review 2. MIT Press, Cambridge, MA, pp 299–342

Huber JE, Fleck NA, Ashby MF (1997) The selection of mechanical actuators based on performance indices. Proc R Soc Math Phys Eng Sci 453:2185–2205

Hurst JW, Chestnutt J, Rizzi AA (2004) An actuator with physically variable stiffness for highly dynamic legged locomotion. In: Proceedings of the IEEE international conference robotics and automation (ICRA’04), New Orleans, pp 4662–4667

IEEE Standard on Piezoelectricity (1988)

Jacobsen SC, Wood JS, Knutti DF, Biggers KB (1984) The Utah/MIT dexterous hand: work in progress. Int J Robot Res 3(4):21–50

Jayender J, Patel R, Nikumb S, Ostojic M (2008) Modeling and control of shape memory alloy actuators. IEEE Trans Control Syst Technol 16(2):279–287

Kawamura S, Miyata K, Hanafusa H, Isida K (1989) PI type hierarchical feedback control scheme for pneumatic robots. In: Proceedings of the international conference robotics and automation, Scottsdale, 14–19 May 1989, pp 1853–1858

Kuribayashi K (1991) Improvement of the response of an SMA actuator using a temperature sensor. Int J Robot Res 10:13–20

Liu S, Bobrow JE (1988) An analysis of a pneumatic servo system and its application to a computer controlled robot. J Dyn Syst Meas Cont 110:228–235

Migliore SA, Brown EA, DeWeerth SP (2005) Biologically inspired joint stiffness control. In: Proceedings IEEE international conference robotics and automation (ICRA’05), Apr 2005, pp 4519–4524

Miller TJE (1989) Brushless permanent magnet and switched reluctance motor drives. Oxford University Press, Oxford

Morgan Matroc Ltd Piezoelectric ceramics. Vauxhall Industrial Estate, Ruabon, Wrexham, Clwyd LL14 6HY

Pratt GA, Williamson MM (1995) Series elastic actuators. In: Proceedings of the IEEE international workshop on intelligent robots and systems (IROS’95), Pittsburg, pp 399–406

Sen PC (1997) Principles of electric machines and power electronics. Wiley, New York

Shea J (2002) Electroactive polymers (EAP). IEEE Electr Insul Mag 18(1):47–48

Shen NH (1994) Analysis of beams containing piezoelectric sensors and actuators. Smart Mater Struct 3:439–447

Suzuki M (1991) Amphoteric polyvinyl alcohol hydrogel and electrohydrodynamic control method for artificial muscles. In: D. De Rossi (ed) Polymer gels. Plenum Press, New York, pp 221–236

Tabata O, Konishi S, Cusin P, Ito Y, Kawai F, Hirai S, Kawamura S (2000) Microfabricated tunable bending stiffness device. In: Proceedings of the 13th annual international conference micro electro mechanical systems (MEMS 2000), Jan 2000, pp 23–27

Tonietti G, Schiavi R, Bicchi A (2005) Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction. In: Proceedings of the 2005 I.E. international conference robotics and automation (ICRA’05), pp 526–531

Uchino K (1997) Piezoelectric actuators and ultrasonic motors. Kluwer, Boston

Uchino K, Giniewitz JR (2003) Micromechatronics. No 22 in Material engineering. Dekker, New York

Uhea S (2001) Recent development of ultrasonic actuators. vol 1 od ultrasonic symposium 2001 IEEE, Atlant, 7–10 Oct 2001

Umetani Y, Suzuky H (1980) Piezo-electric micro-manipulator in multi-degrees of freedom with tactile sensibility. In: Proceedings of the 10th international symposium on industrial robots, Milan, 5–7 Mar 1980, pp 571–579

Venison GS (1986) A practical look at shape memory alloys’ potential as a thermal actuator. Mater Design 7:143–146

Wavre N, Thouvenin X (1995) Voice-coil actuators in space. In: Proceedings of the 6th European space mechanisms & tribology Symposium

Zupan M, Ashby MF, Fleck NA (2002) Actuator classification and selection—the development of a database. Adv Eng Mater (Impact Factor: 161) 4(12):933–940