48.8 Rezumat și Referințe

Rezumat

Acest capitol prezintă o teorie fundamentală pentru mișcările corpului rigid. Teoria șurubului, grupul Lie și algebra Lie au fost aplicate cu succes fizicii moderne și mișcării corpului rigid și au devenit un instrument puternic pentru analiza diferitelor mecanisme și roboți. Este făcută o prezentare generală de bază de la metodele algebrice convenționale la metodele geometrice moderne. Un exemplu de aplicație a unui robot SCARA este dat în ultima secțiune, care instruiește utilizarea instrumentelor matematice de bază prezentate în acest capitol. Cu siguranță, acest conținut nu este o versiune cuprinzătoare a cinematicii robotului, așa că cititorul interesat se poate referi la cărțile enumerate în referințe pentru obținerea unor procese de derivare mai detaliate.

Referințe

Ahlers SG, McCarthy JM (2001) The Clifford algebra and the optimization of robot design. In: Corrochano EB (ed) Geometric algebra with applications in science and engineering, Springer Verlag, Basel, pp 235–251

Akyar B (2008) Dual quaternions in spatial kinematics in an algebraic sense. Turk J Math 32 (4):373–391

Arribas M, Elipe A, Palacios M (2006) Quaternions and the rotation of a rigid body. Celest Mech Dyn Astron 96(3–4):239–251

Aspragathos NA, Dimitros JK (1998) A comparative study of three methods for robot kinematics. IEEE Trans Syst Man Cybern 28(2):135–145

Ball RS (1998) A treatise on the theory of screws. Cambridge University Press, Cambridge

Brockett RW (1984) Robotic manipulators and the product of exponentials formula. In: Fuhrmann PA (ed) Mathematical theory of networks and systems. Springer, Berlin/Heidelberg

Cheng H, Gupta KG (1989) An historical note on finite rotations. J Appl Mech 56:139–145

Clifford WK (1873) Preliminary sketch of bi-quaternions. Proc Lond Math Soc 4:381–395

Coolidge JL (2003) A history of geometrical methods. Courier Dover, New York

Coutsias EA, Romero L (2004) The quaternions with an application to rigid body dynamics. Technical report SAND2004-0153. Sandia National Laboratories

Craig JH (2005) Introduction to robotics: mechanics and control. Prentice Hall, New York

Dai JS (2006) An historical review of the theoretical development of rigid body displacements from Rodrigues parameters to the finite twist. Mech Mach Theory 41(1):41–52

Dai JS, Jones J (2001) Interrelationship between screw systems and corresponding reciprocal systems and applications. Mech Mach Theory 36(5):633–651

Davidson JK, Hunt KKH (2004) Robots and screw theory: applications of kinematics and statics to robotics. Oxford University Press, London

Delphenich DH (2012) The representation of physical motions by various types of quaternions. arXiv preprint arXiv:1205.4440

Dimentberg FM (1965) The screw calculus and its application to mechanics. US Department of Commerce Translation No AD680993

Etzel KR, McCarthy JM (1996) A metric for spatial displacements using biquaternions on SO(4). In: Proceedings of the IEEE international conference on robotics and automation, Minneapolis, 22–28 April

Fu KS, Gonzalez RC, Lee CSG (1988) Robotics: control, sensing, vision and intelligence. McGraw-Hill, New York

Ge QJ (1998) On the matrix realization of the theory of biquaternions. Trans Am Soc Mech Eng J Mech Des 120:404–407

Ge QJ, Varshney A, Menon JP et al (1998) Double quaternions for motion interpolation. In: Proceedings of the ASME design engineering technical conference, Atlanta, Georgia, USA

Gouasmi M (2012) Robot Kinematics using Dual Quaternions. IAES Int J Robot Autom 1 (1):13–30

Hamilton WR II (1844) On quaternions; or on a new system of imaginaries in algebra. Lond Edinb Dublin Philos Mag J Sci 25(163):10–13

Herve´ JM (1999) The Lie group of rigid body displacements, a fundamental tool for mechanism design. Mech Mach Theory 34(5):719–730

Huang Z, Li Q, Ding H (2013) Theory of parallel mechanisms. Springer, New York

Hunt KH (1990) Kinematic geometry of mechanisms. Clarendon, Oxford

Klein F (1933) Elementary mathematics from an advanced standpoint: arithmetic, algebra, analysis. Bull Am Math Soc 39:495–496

Kotelnikov AP (1895) Screw calculus and some applications to geometry and mechanics. Annals of Imperial University of Kazan, Kazan

Lie S (1880) Theorie der transformations group I. Math Ann 16(4):441–528 McCarthy JM (1990) Introduction to theoretical kinematics. MIT Press, New York

Mozzi G (1763) Discorso matematico sopra il rotamento momentaneo dei corpi. Donate Campo, Napoli

Murray M, Li ZX, Shankar S (1994) A mathematical introduction to robotic manipulation. Taylor & Francis, Boca Raton

O’Reilly OM (2008) Intermediate dynamics for engineers; a unified treatment of Newton-Euler and Lagrangian mechanics. Cambridge University Press, New York/Cambridge

Paul RP, Shimano BE, Mayer G (1981) Kinematic control equations for simple manipulators. IEEE Trans Syst Man Cybern 11:449–455

Phillips J (1990) Freedom in machinery: screw theory exemplified, vol 2. Cambridge University Press, London

Poinsot L (1851) The´orie nouvelle de la rotation des corps. Bachelier, Paris

Rocha CR, Tonetto CP, Dias A (2011) A comparison between the Denavit-Hartenberg and the screw-based methods used in kinematic modeling of robot manipulators. Robot Comp Integr Manuf 27(4):723–728

Selig JM (1996) Geometrical methods in robotics. Springer, New York

Senan NAF, O’Reilly OM (2009) On the use of quaternions and Euler-Rodrigues symmetric parameters with moments and moment potentials. Int J Eng Sci 47(4):595–609 Study E (1901) Geometrie der Dynamen. Teubner, Leipzig

Tsai LW, Roth B (1973) Incompletely specified displacements: geometry and spatial linkage synthesis. J Eng Ind 95(B):603–611

Waldron K, Schmiedeler J (2001) Kinematics. Springer handbook of robotics. Springer, Berlin/Heidelberg

Widdows D (2006) Quaternion algebraic geometry. Oxford university, DPhil thesis, Oxford

Wu Y, Hu X, Hu D et al (2005) Strapdown inertial navigation system algorithms based on dual quaternions. IEEE Trans Aerosp Electron Syst 41(1):110–132

Yang AT, Freudenstein F (1964) Application of dual-number quaternion algebra to the analysis of spatial mechanisms. J Appl Mech Trans ASME 86(2):300–309

Young L, Duffy J (1986) A theory for the articulation of planar robots. ASME J Mech Transm Autom Des 109(1):29–36

Yu JJ, Liu XJ et al (2008) The mathematical foundations of robot mechanism. China Machine Press, Beijing