46.8 Rezumat, Referințe

Jetul de apă a fost introdus pentru prima dată în 1970 pentru tăierea materialelor moi, cum ar fi materialele plastice și hârtie absorbantă. Pentru a tăia materiale dure, a fost introdusă tehnologia cu jet de apă abraziv (AWJ) la începutul anilor 1980. Acest lucru a lărgit semnificativ gama de aplicații și piețe ale uneltei cu jet de apă. Aproape orice material poate fi tăiat cu AWJ, cum ar fi piatra, sticlă, compozite, metal, carburi și ceramică. Astăzi, există peste 30 de industrii care folosesc unealta cu jet de apă, cum ar fi avioanele, motoarele cu reacție, construcțiile, atelierul de lucru, semnalizarea și arhitectura.

Platformele (subsistemele) de bază ale unui sistem cu jet de apă sunt platforma de ultraînaltă presiune (UHP) care include pompele și țevile și platforma de tăiere care include capete de tăiere, alimentare abrazivă și modele predictive de tăiere. Aceste modele sunt încorporate în platforma software și utilizate integral cu sistemele CAD/CAM. Platforma de mișcare include manipulatoarele necesare pentru tăiere și automatizare. În cele din urmă, platforma auxiliară include alt hardware sau software pentru a îmbunătăți performanța sistemului sau pentru a satisface cerințele specifice ale clienților.

Au existat mai multe progrese în platformele de mai sus în ultimul deceniu. Printre cele mai notabile progrese se numără introducerea pompelor UHP pentru funcționare la 650 MPa și dezvoltarea articulațiilor de control conic automat și a software-ului pentru tăierea de precizie 2D și 3D.

AWJ-urile au fost folosite pentru multe aplicații, cum ar fi tăierea, decuparea, strunjirea, frezarea și găurirea. Însă, majoritatea aplicațiilor de astăzi sunt legate de tăiere și decupare. În general, utilizarea AWJ-urilor pentru prelucrare are multe avantaje tehnice și economice față de metodele existente.

Referințe

Ansari A, Hashish M, Ohadi M (1992) Flow visualization study on macro mechanics of abrasivewaterjet turning. J Exp Mech 32:358–364

Bitter JGA (1963) A study of erosion phenomena: part I. Wear 6:5–21

Bridgman PW (1970) The physics of high pressure, 1st edn. Dover Publications, New York

Chillman A, Ramulu M, Hashish M (2010) Waterjet and water-air jet surface processing of titanium alloy: a parametric evaluation. J Manuf Sci Technol Trans ASME 132:011012-1–0110012-10

Crow S, Hashish M (1989) Mechanics of abrasive jet cutting. Flow research presentation, Flow Research Company, 23500, 64th Av.s. Kent, WA 98032

Dunsky CM, Hashish M (1994) Feasibility study of machining with high-pressure liquefied CO2 jets. In: Manufacturing science and engineering, book no G0930A, PED-Vol 68-1, The American Society of Mechanical Engineers, pp 453–460

Dunsky CM, Hashish M (1996) Observations on cutting with abrasive-cryogenic jets (ACJ). In: Proceedings of the 13th international conference on jetting technology, BHRA, Sardinia

Finnie I (1958) The mechanism of erosion of ductile metals. In: Proceedings of the third national congress of applied mechanics, ASME, pp 527–532

Fowler G, Shipway PH, Pashby IR (2005) Abrasive waterjet controlled depth milling of ti6al-4v alloy – an investigation of the role of jet – workpiece traverse speed and abrasive grit size on the characteristics of the milled material. J Mater Process Technol 161:407–414

Geskin E, Shishkin D, Babets K (1999) Application of ice particles for precision cleaning of sensitive surfaces. In: Proceedings of the 10th American waterjet conference, paper 22, WJTA

Guo Z, Ramulu M (1999) Simulation of displacement fields associated with abrasive waterjet drilling. In: Proceedings of the 10th American waterjet conference, paper 19, WJTA

Hashish M (1982) Steel cutting with abrasive-waterjets. In: Proceedings of the 6th international symposium on jet cutting technology, BHRA

Hashish M (1984a) Cutting with abrasive-waterjets. Mech Eng 106(1):60–66

HashishM(1984b) A modeling study of metal cutting with abrasive-waterjets. ASME Trans J Eng Mater Technol 106:88–100

Hashish M (1987) Turning with abrasive-waterjets – a first investigation. ASME Trans J Eng Ind 109(4):281–296

Hashish M (1988) Visualization of the abrasive-waterjet cutting process. J Exp Mech 28(2):159–169

Hashish M (1989) An investigation of milling with abrasive-waterjets. ASME Trans J Eng Mater Technol 111(2):158–166

Hashish M (1991) Cutting with high pressure abrasive suspension jets. In: Proceedings of the 6th American waterjet conference, WJTA, Houston, pp 439–55

Hashish M (1992) A modeling study of jet cutting surface finish. In: Jouaneh M, Rangwala S (eds) ASME proceedings on precision machining: technology and machine development and improvement, ASME Publication PED-Vol 58, pp 151–167

Hashish M (1994) Controlled-depth milling techniques using abrasive-waterjets. In: Proceedings of the 12th international water jet cutting technology conference, BHR Group, pp 449–462

Hashish M (1998a) The waterjet as a tool. In: Proceedings of the 14th international water jet cutting technology conference, BHR Group, Brugge

Hashish M (1998b) Controlled depth milling of isogrid structures with AWJs. ASME Trans J Manuf Sci Eng 120:21–27

Hashish M (2002a) Cutting with high-pressure ammonia jets for demilitarization of chemical weapons. J Press Vessel Technol Trans ASME 124:487

Hashish M(2002b) Waterjet cutting studies. In: Proceedings of the 16th international water jetting technology conference, BHR Group, pp 13–48

Hashish M (2002c) Drilling small deep diameter holes using abrasive waterjet. In: Proceedings of the 16th international conference on water jetting, BHR Group, pp 33–49

Hashish M (2003) Inside AWJ nozzles. In: Proceedings (CD Format) of the 2003 waterjet conference, WJTA

Hashish M (2007) Benefits of dynamic waterjet angle compensations. In: Proceedings of the 2007 American water jet conference, waterjet Technology Association, St.Louis, MO Paper 1-H

Hashish M, DuPlessis MP (1979) prediction equations relating high velocity jet cutting performance to stand off distance and multi-passes. ASME Trans J Eng Mater Technol 101(3):311–318

Henning A (1999) Modeling of turning operation for abrasive waterjets. In: Proceedings of the 10th American waterjet conference, pp 795–810

Henning A, Anders S (1998) Cutting edge quality improvement through geometrical modeling. In: Proceedings of the 14th international conference on water jetting, BHR, pp 321–328

Henning A, Westkamper E (2000) Modeling of contour generation in abrasive waterjet cutting. In: Proceedings of the 15th international conference on water jetting, BHR, pp 309–320

Henning A, Goce E, Westkamper E (2002) Analysis and control of striations structure at the cutting edge of abrasive waterjet cutting. In: Proceedings of the 16th international conference on water jetting, BHR, pp 173–191

Hollinger RH, Mannheimer RJ (1991) Rheological investigation of the abrasive suspension jet. In: Proceedings of the 6th American waterjet conference, WJTA, Houston, pp 515–28

Hood M (1977) A study of methods to improve the performance of drag bits used to cut hard rock. Chamber of mines of South Africa Research Organization, Project GT2 No 2, Research report number 35177

Iscoff R (2003) On the cutting edge: laser, water singulation bid for acceptance in a saw-diamond market. Chip Scale Review, August

Knaupp M, Meyer A, Erichsen G, Sahney M, Burnham C (2002) Dynamic compensation of abrasive water jet properties through 3-dimensional jet control. In: Proceedings of the 16th international conference on water jetting, BHR group, pp 75–90

Manu R, Babu RN (2008) Influence of jet impact angle on part geometry in abrasive waterjet turning of aluminum alloys. Int J Mach Machinability Mater 3:120–132

Ohlsson L et al (1992) Optimization of the piercing or drilling mechanisms of abrasive-waterjets. In: Proceedings of the 11th international symposium on jet cutting technology, BHR

Ramulu M, Posinasetti P, Hashish M (2005) Analysis of abrasive waterjet drilling process. In: Proceedings of the 2005 American waterjet conference, paper 19, WJTA

Shimizu S (2006) Structure and erosive characteristics of waterjets issuing from fanjet nozzle. In: Proceedings of the 18th international water jetting conference, BHR Group, pp 337–345

Yanaida K (1974) Flow characteristics of waterjets. In: Proceedings of the second international symposium on jet cutting technology, paper A2, BHR Group, The Fluid Engineering Centre

Zeng J, Wu S, Kim TJ (1994) Development of a parameter prediction model for abrasive-waterjet turning. In: Proceedings of the 12th international conference on water jetting, BHR Group, pp 601–617

Zeng J, Olsen J, Olsen C, Guglielmetti B (2005) Taper-free abrasive waterjet cutting with a tilting head. In: Proceedings of the 2005 American waterjet conference M.Hashish, WJTA (waterjet technology association), St. Lois Mo.