32.8 Rezumat, Referințe

Rezumat

Acest pachet software CAATC poate îndeplini cele mai multe sarcini ale graficului de toleranță cu algoritmi și metode moderne și avansate. Cu ajutorul utilizatorilor, CAATC poate automatiza sarcinile de proiectare care ar dura ore, zile sau chiar săptămâni dacă ar fi efectuate manual. CAATC pare simplu, dar foarte complex de fapt. CAATC oferă utilizatorilor interfețe prietenoase și ajută planificatorul de proces să construiască diagrama de toleranță și folosește metoda algebrică pentru a determina lanțurile dimensionale și dimensiunile de lucru și pentru a implementa alocarea toleranței cu algoritmul genetic. CAATC trebuie să se ocupe de multe informații despre tăieturile de prelucrare, dimensiunile de lucru, secvențele proceselor, eliminarea stocurilor, dimensiunile rezultate și așa mai departe. Informația este foarte complexă. Deci, este greu să construiți o structură de date excelentă pentru a descrie diagrama toleranței unghiulare. Aceste sarcini trebuie rezolvate una câte una. După ce sistemul CAATC devine mai experimentat, ar trebui construită o structură de date mai simplificată. Metoda algebrică utilizată în determinarea dimensiunilor de lucru este foarte eficientă. Unele dintre condiții sunt necesare pentru a fi introduse direct de către utilizator în mod interactiv. Folosind CAATC ca instrument de dezvoltare a graficelor de toleranță, timpul poate fi redus drastic.
This CAATC software package can perform the most tasks of the tolerance charting with modern advanced algorithms and methods. With the input by users, CAATC can automate the design tasks that would take hours, days, or even weeks if performed manually. CAATC looks simple, but very complex in fact. CAATC gives users friendly interfaces and aids the process planner to construct the tolerance chart, and uses the algebraic method to determine the dimensional chains and working dimensions and to implement the tolerance allocation with the genetic algorithm. CAATC needs to deal with much information about the machining cuts, work dimensions, process sequences, stock removals, resultant dimensions, and so on. The information is very complex. So, it is hard to construct an excellent data structure to describe the angular tolerance charting. These tasks must be dealt with one by one. After the CAATC system becomes more experienced, a more simplified data structure should be constructed. The algebraic method used in determining the working dimensions is very effective. Some of the conditions are required to input directly by the user interactively. Using CAATC as a tool of developing the tolerance charts, the time can be reduced sharply.

Însă, modul de integrare a software-ului CAATC cu pachetele software existente CAD, CAPP sau CAM este o altă problemă care trebuie rezolvată.
However, how to integrate the CAATC software with existing CAD, CAPP, or CAM software packages is another pending problem to be solved.

Referințe

Ahluwalia RS, Karolin AV (1984) CATC – a computer aided tolerance control system. J Manuf Sys 3(2):153–160

Al-Ansary MD, Deiab IM (1997) Concurrent optimization of design and machining tolerances using the genetic algorithms method. Int J Mach Tools Manuf 37(12):1721–1731

Chase KW, Greenwood WH, Loosli BG, Hauglund LF (1990) Least cost tolerance allocation for mechanical assemblies with automated process selection. Manuf Rev 3:49–59

Chen TC, Fischer GW (2000) A GA-based search method for the tolerance allocation problem. Artif Intell Eng 14:133–141

Dong Z, Soom A (1990) Automatic optimal tolerance design for related dimension chains. Manuf Rev 3(4):262–271

Dong Z, Hu W, Xue D (1994) New production cost-tolerance models for tolerance synthesis. Trans ASME J Eng Ind 116:199–206

Gadallah MH, El Maraghy HA (1994) A new algorithm for discrete tolerance optimization. In: Computer integrated manufacturing and automation techniques, Proceedings of the fourth international conference, Troy, 10–12 Oct 1994, pp 292–297

He JR (1991) Tolerancing for manufacturing via cost minimization. Int J Mach Tools Manuf 31(4):455–470

Irani SA, Mittal RO, Lehtihet EA (1989) Tolerance chart optimization. Int J Prod Res 27(9):1531–1552

Jeang A, Hun CZ (2000) Process parameters determination for precision manufacturing. Qual Reliab Eng Int 16:33–44

Ji P (1993a) A tree approach for tolerance charting. Int J Prod Res 31(5):1023–1033

Ji P (1993b) A linear programming model for tolerance assignment in a tolerance chart. Int J Prod Res 31(3):739–751

Ji S, Li X, Ma Y, Cai H (2000) Optimal tolerance allocation based on fuzzy comprehensive evaluation and genetic algorithm. Int J Adv Manuf Tech 16:461–468

Kopardekar P, Anand S (1995) Tolerance allocation using neural networks. Int J Adv Manuf Tech 11(10):269–276

Lee WJ, Woo TC (1989) Optimum selection of discrete tolerance. J Mech Trans Auto Des 111:243–250

Li W, Bai G, Zhang C, Wang B (2000) Optimization of machining datum selection and machining tolerance allocation with genetic algorithms. Int J Prod Res 38(6):1407–1424

Lin CY, Huang WH, Jeng MC, Doong JL (1997) Study of an assembly tolerance allocation model based on Monte Carlo simulation. J Mater Proc Tech 70:9–16

Ming XG, Mak KL (2001) Intelligent approaches to tolerance allocation and manufacturing operations selection in process planning. J Mater Process Tech 17:75–83

Morris CG (1992) Academic Press dictionary of science and technology. Academic press inc. San Diego, CA

Mullapudi R, Gavankar P (1994) An object-oriented tolerance representation scheme for concurrent engineering. Int J Manuf Syst Des 1(2):145–153

Nee AYS, Kumar AS (1992) A rule-based system for angular tolerance charting. Int J Mach Tools Manuf 32(6):885–899

Ngoi BKA (1992) Applying linear programming to tolerance chart balancing. Int J Adv Manuf Tech 7:187–192

Ngoi BKA, Chua CK (1993) A matrix approach to tolerance charting. Int J Adv Manuf Tech 8:175–181

Nurre JH, Vedati K (1998) Cost optimization of a process plans tolerance assignments for manufacturing. Int J Model Simulat 18(3):196–200

Tang XQ, Davies BJ (1988) Computer aided dimensional planning. Int J Prod Res 26(2):283–297

Tang GR, Fuh YM, Kung R (1993) A list approach to tolerance charting. Comput Ind 22:291–302

Tseng YJ, Terng YS (1999) Alternative tolerance allocations for machining parts represented with multiple sets of features. Int J Prod Res 37(7):1561–1579

Whybrew K, Britton GA, Robinson DF, Sermsuti-Anuwat Y (1990) A graph theoretic approach to tolerance charting. Int J Adv Manuf Tech 5:175–183

Wu Z, Elmaraghy WH, Elmaraghy HA (1988) Evaluation of cost-tolerance algorithm for design tolerance analysis and synthesis. Manuf Rev 1(3):168–179

Xue JB, Ji P (2002) Identifying tolerance chains with a surface-chain model in tolerance charting. J Mater Process Tech 123(1):93–99

Xue JB, Ji P (2004) Process tolerance allocation in angular tolerance charting. Int J Prod Res 42(18):3929–3945

Xue JB, Ji P (2005) Tolerance charting for components with both angular and square shoulder features. IIE Trans 37:815–825

Zhang C, Wang HP, Li JK (1992) Simultaneous optimization of design and manufacturing –tolerances with process (machine) selection. Annals CIRP 41(1):569–572