8.15 Rezumat, Referințe

 Rezumat

Piesele turnate sunt produse printr-o metodă de fabricație care împreună cu selecția aliajului și tratarea topiturii afectează în mod inerent proprietățile microstructurale generale ale componentei, inclusiv defectele. Indiferent dacă materialele feroase sau neferoase sunt folosite pentru o aplicație curentă, există proiectarea componentelor, incluzând canalul de rulare, ascensoare și porți, metalurgie și relații de proces, ceea ce duce la componente care conțin o mare varietate de microstructuri, inclusiv dimensiunea, morfologia și distribuția defectelor și, prin urmare, o varietate de proprietăți pe întreaga geometrie. Grosimea peretelui influențează macrogranulația microstructurii, iar componenta va avea proprietăți în funcție de istoriile metalurgice și termice locale. Mai mult, poate acumula tensiuni reziduale în timpul răcirii, care la rândul lor afectează comportamentul la deformare a componentelor turnate. Având în vedere acest lucru, este evident că, pentru a îndeplini cerințele de configurare privind performanța, în general, este nevoie de compromisuri pentru a găsi un echilibru între mai multe obiective conflictuale. Adesea, simulările mecanice ale situațiilor de încărcare se bazează pe ipoteza că produsul turnat are proprietăți materiale constante pe toată durata turnării. Realitatea diferă și, prin urmare, proiectanții sunt încurajați să țină cont de faptul că proprietățile care provin din bara de testare standardizată ar putea duce probabil la supradimensionare neeconomică, rezultate necorespunzătoare și concluzii în majoritatea cazurilor. 

Castings are produced by a manufacturing method that together with alloy selection and melt treatment inherently affect the component’s overall microstructural properties including defects. Whether ferrous or nonferrous materials are employed for a current application, design of components including runner, riser and gating, metallurgy, and process relations are existing, which lead to components containing a wide variety of microstructures including defect size, morphology, and distribution and hence a variety of properties over the entire geometry. The wall thickness influences the coarseness of the microstructure, and the component will have properties depending on the local metallurgical and thermal histories. Moreover, it can build up residual stresses during cooling which in turn affects the deformation behavior of cast components. With this in mind, it is obvious that in order to meet setup demands on performance generally requires compromises to strike a balance between several conflicting objectives. Often, mechanical simulations of the load situations are based on the assumption that the cast product has constant material properties throughout the entire casting. Reality differs and therefore designers are encouraged to bear in mind that properties that originate from standardized test bar might probably lead to uneconomic over-dimensioning, improper results, and conclusions in most cases.


Referințe

Alternatives to SF6 for magnesium melt protection (2006) United states environmental protection agency EPA-430-R-06-007

Askeland DR, Fulay PP, Wright WJ (2011) The science and engineering of materials, 6th edn

ASM Handbook (1992) ASM handbook – casting, vol 15. ASM, Metals Park, Ohio, USA

ASM Specialty Handbook (1996) Cast iron. ASM, Metals Park

Azom.com A to Z of Materials (2013) http://www.azom.com/article.aspx?ArticleID=1392.

Accessed 06 Feb 2013

Brown JR (2000) Foseco ferrous foundryman’s handbook, 11th edn. Butterworth-Heinemann, Oxford

Brown JR (2010) Foseco non-ferrous Foundryman’s handbook, 11th edn. Butterworth-

Heinemann, Oxford

Campbell J (2002) Castings Butterworth-Heinemann; 2nd edn, Oxford

Cao H (2005) Characteristics of cast magnesium alloys: microstructures, defects and mechanical properties. Linko¨ping University

Cao H, Wesse´n M (2004) Effect of microstructure on mechanical properties of As-Cast Mg-Al alloys. Metall Mater Trans A 35:308–319

Clegg AJ (1991) Precision casting processes. Pergamon Press, Oxford

Copper Development Association (1991) Copper & copper alloy castings properties & applications publication TN42

CustomPartsNet (2013) http://www.custompartnet.com/. Accessed 03 Jan 2013

Dio´szegi A (2004) On microstructure formation and mechanical properties in grey cast iron. Linko¨ping University, Linko¨ping

Fredriksson H, A ° kerlind U (2006) Materials processing during casting Wiley, ISBN-10:

0470015136

Goodwin FE (1998) Engineering properties of zinc alloys, 3rd edn

Janowak JF, Gundlach RB (1982) A modern approach to alloying grey iron. AFS Trans

90:847–863

Jarfors AEW (1992) Dissolution and precipitation of borides and carbides in liquid aluminiumtitanium. In: Metals casting. Royal Institute of Technology, Stockholm

Jarfors AEW, Ervasti E (2000) Simulation and modelling in materials processing, 1st edn. Studentlitteratur, Lund

Jarfors AEW et al (2003) Mechanism of lubrication-induced surface cracking in hot chamber die cast thin-walled AZ91D parts. Mater Manuf Process 18(4):637–641

Jarfors AEW et al (2009) Recent developments in the manufacturing of components from aluminium-, magnesium-and titanium-based alloys. Cosmos 5(1):23–58

Jarfors AEW et al (2010) Tillverkningsteknologi, 4th edn. Studentlitteratur, Lund

Kainer KU (2003) Magnesium – alloys and technologies. Wiley-VCH Verlag GmbH & Co. KG aA, Weinheim ISBN: 3-527-30570-X

Karsay SI, Q. Corporation (eds) (1971) Ductile iron: II. Engineering design, properties, applications. QIT Corporation, Sorel

Mo¨ller H, Govender G, Stumpf WE (2007) Natural and artificial aging response of semisolid metal processed Al-Si-Mg alloy A356. Int J Cast Metal Res 20(6):340–346

Porter F (1991) Zinc handbook

Reif W et al (1997) Pre-ageing of AISiCuMg alloys in relation to structure and mechanical properties. Mater Des 18(4–6):253–256

Seifeddine S (2006) Characteristics of cast aluminium-silicon alloys: microstructures and mechanical properties. School of Engineering, University of Jo¨nko¨ping, Jo¨nko¨ping
Seifeddine S, Svensson IL (2010) Prediction of mechanical properties of cast aluminium components at various iron contents. J Mater Des 31:S6–S12

Seifeddine S, Bogdanoff T, and Sjo¨lander E (2013) On the role of copper and cooling rates on the microstructure, defect formations and mechanical properties of Al-Si-Mg alloys. Mater Sci Appl, 4: 171–178. http://dx.doi.org/10.4236/msa.2013.43020 Published Online March 2013

Sjo¨lander E (2011) Heat treatment of Al-Si-Cu-Mg casting alloys. School of Engineering, Jo¨nko¨ping University, Jo¨nko¨ping

Street AC (1977) The die casting handbook. Portcullis Press Ltd., Redhill

Su CWet al (2010) Mechanical properties and microstructure of aluminum alloy Al-6061 obtained by the liquid forging process. In: Nie JF, Morton A (eds) Proceedings of the 7th Pacific Rim International conference on advanced materials and processing. Cairns Convention Centre. Cairns, Australia, Pts 1–3. pp 1420–1423

Svensson IL (1980) Solidification technology in foundry and casthouse. The Metals Society, Warwick

Svensson IL (2001) Component casting and simulation, 1st edn, Compendium, School of engineering jo¨nko¨ping university, Jo¨nko¨ping Swden

Svensson IL, Fredriksson H (1980) Solidification technology in foundry and casthouse. The Metals Society, Warwick

Totten GE, Xie L, Funatani K (2003) Handbook of mechanical alloy mechanical alloy design, New York, CRC Press

Zamani M, Seifeddine S, Azoudouri M (2013) The role of Sr on microstructure formations and mechanical properties of Al-Si-Cu-Mg casting alloy, in TMS 2013. Minerals, Metals and Materials Society, San Antonio