Виды чисел

На примере развития видов чисел можно проследить самые простые законы эволюции, которой подчиняется все сущее. Подробнее об эволюции человека и Мироздания можно почитать в к книгах, онлайн размещенных на главной странице.

Основные числовые множеств

    • Натуральные числа (

    • ) — числа, получаемые при естественном счёте: Иногда к множеству натуральных чисел также относят ноль, то есть Натуральные числа замкнуты относительно сложения и умножения (но не вычитания или деления). Сложение и умножение натуральных чисел коммутативны и ассоциативны, а умножение натуральных чисел дистрибутивно относительно сложения и вычитания.

    • Целые числа (

    • ) — числа, получаемые объединением натуральных чисел со множеством чисел противоположных натуральным и нулём, обозначаются Любое целое число можно представить как разность двух натуральных. Целые числа замкнуты относительно сложения, вычитания и умножения (но не деления); в общей алгебре такая алгебраическая структура называется кольцом.

    • Рациональные числа (

    • ) — числа, представимые в виде дроби m/n (n ≠ 0), где m — целое число, а n — натуральное число. Рациональные числа замкнуты уже относительно всех четырёх арифметических действий: сложения, вычитания, умножения и деления (кроме деления на ноль); в общей алгебре такая алгебраическая структура называется полем. Для обозначения рациональных чисел используется знак

(от англ. quotient).

    • Действительные (вещественные) числа () — числа, представляющие собой расширение множества рациональных чисел, замкнутое относительно некоторых (важных для математического анализа) операций предельного перехода. Множество вещественных чисел обозначается . Его можно рассматривать как пополнение поля рациональных чисел при помощи нормы, являющейся обычной абсолютной величиной. Кроме рациональных чисел, включает множество иррациональных чисел , не представимых в виде отношения целых.

    • Комплексные числа (

    • ) — числа, являющиеся расширением множества действительных чисел. Они могут быть записаны в виде , где i — т. н. мнимая единица, для которой выполняется равенство Комплексные числа используются при решении задач электротехники, гидродинамики, картографии, квантовой механики, теории колебаний, теории хаоса, теории упругости и многих других. Комплексные числа подразделяются на алгебраические и трансцендентные. При этом каждое действительное трансцендентное является иррациональным, а каждое рациональное число — действительным алгебраическим. Более общими (но всё ещё счётными) классами чисел, чем алгебраические, являются периоды, вычислимые и арифметические числа (где каждый последующий класс шире, чем предыдущий).

Для перечисленных множеств чисел справедливо следующее выражение:

Обобщения чисел

Кватернионы представляют собой разновидность гиперкомплексных чисел. Множество кватернионов обозначается . Кватернионы в отличие от комплексных чисел не коммутативны относительно умножения.

В свою очередь октонионы , являющиеся расширением кватернионов, уже теряют свойство ассоциативности.

В отличие от октонионов, седенионы не обладают свойством альтернативности, но сохраняют свойство степенной ассоциативности.

Для этих множеств обобщённых чисел справедливо следующее выражение:

p-адические числа можно рассматривать как элементы поля, являющегося пополнением поля рациональных чисел при помощи т. н. p-адического нормирования, аналогично тому, как поле действительных чисел определяется как его пополнение при помощи обычной абсолютной величины.

Аде́ли определяются как бесконечные последовательности {a,a2,a3,…ap…}, где a — любое действительное число, а ap — p-адическое, причём все ap, кроме, может быть, конечного их числа, являются целыми p-адическими. Складываются и умножаются адели покомпонентно и образуют кольцо. Поле рациональных чисел вкладывается в это кольцо обычным образом r→{r, r,…r,…}. Обратимые элементы этого кольца образуют группу и называются иде́лями.

Практически важным обобщением числовой системы является интервальная арифметика.

Иерархия чисел

Ниже представлена иерархия чисел, для множеств которых справедливо выражение , с примерами:

Натуральные числа

Целые числа

Рациональные числа

Вещественные числа

Комплексные числа

Кватернионы

Октонионы

Седенионы

Данная иерархия не является полной, так как её можно расширять сколь угодно много раз (см. процедура Кэли — Диксона). Материал из Вики.