VCE Biology

Subject Prospectus - Science

Rationale: Biology is a diverse and evolving science discipline that seeks to understand and explore the nature of life, past and present. Despite the diversity of organisms and their many adaptations for survival, all life forms share a degree of relatedness and a common origin. The study explores the interactions between organisms and their non-living environment. It also explores the processes of life, from the molecular world of the cell to that of the whole organism. Students examine classical and contemporary research, models and theories to understand how knowledge in biology has evolved and continues to evolve in response to new evidence and discoveries. An understanding of the complexities and diversity of biology leads students to appreciate the interconnectedness of the content areas both within biology, and across biology and the other sciences

Structure: 

Unit 1: How do organisms regulate their functions?

In this unit students examine the cell as the structural and functional unit of life, from the single celled to the multicellular organism, including the requirements for sustaining cellular processes. Students focus on cell growth, replacement and death and the role of stem cells in differentiation, specialisation and renewal of cells. They explore how systems function through cell specialisation in vascular plants and animals, and consider the role homeostatic mechanisms play in maintaining an animal’s internal environment.

A student-adapted or student-designed scientific investigation is undertaken in Area of Study 3. The investigation involves the generation of primary data and is related to the function and/or the regulation of cells or systems. The investigation draws on the key science skills and key knowledge from Area of Study 1 and/or Area of Study 2.

Unit 2: How does inheritance impact on diversity?

In this unit students explore reproduction and the transmission of biological information from generation to generation and the impact this has on species diversity. They apply their understanding of chromosomes to explain the process of meiosis. Students consider how the relationship between genes, and the environment and epigenetic factors influence phenotypic expression. They explain the inheritance of characteristics, analyse patterns of inheritance, interpret pedigree charts and predict outcomes of genetic crosses.

Students analyse the advantages and disadvantages of asexual and sexual reproductive strategies, including the use of reproductive cloning technologies. They study structural, physiological and behavioural adaptations that enhance an organism’s survival. Students explore interdependences between species, focusing on how keystone species and top predators structure and maintain the distribution, density and size of a population. They also consider the contributions of Aboriginal and Torres Strait Islander knowledge and perspectives in understanding the survival of organisms in Australian ecosystems.

A student-directed research investigation into a contemporary ethical issue is to be undertaken in Area of Study 3. The investigation relates to the application of genetic knowledge, reproductive science, inheritance or adaptations and interdependencies beneficial for survival. The investigation draws on key knowledge and key science skills from Area of Study 1 and/or Area of Study 2.

Unit 3: How do cells maintain life?

In this unit students investigate the workings of the cell from several perspectives. They explore the relationship between nucleic acids and proteins as key molecules in cellular processes. Students analyse the structure and function of nucleic acids as information molecules, gene structure and expression in prokaryotic and eukaryotic cells and proteins as a diverse group of functional molecules. They examine the biological consequences of manipulating the DNA molecule and applying biotechnologies.

Students explore the structure, regulation and rate of biochemical pathways, with reference to photosynthesis and cellular respiration. They explore how the application of biotechnologies to biochemical pathways could lead to improvements in agricultural practices.

Students apply their knowledge of cellular processes through investigation of a selected case study, data analysis and/or a bioethical issue. Examples of investigation topics include, but are not limited to: discovery and development of the model of the structure of DNA; proteomic research applications; transgenic organism use in agriculture; use, research and regulation of gene technologies, including CRISPR-Cas9; outcomes and unexpected consequences of the use of enzyme inhibitors such as pesticides and drugs; research into increasing efficiency of photosynthesis or cellular respiration or impact of poisons on the cellular respiration pathway.

Unit 4: How does life change and respond to challenges? 

In this unit students consider the continual change and challenges to which life on Earth has been, and continues to be, subjected to. They study the human immune system and the interactions between its components to provide immunity to a specific pathogen. Students consider how the application of biological knowledge can be used to respond to bioethical issues and challenges related to disease.

Students consider how evolutionary biology is based on the accumulation of evidence over time. They investigate the impact of various change events on a population’s gene pool and the biological consequences of changes in allele frequencies. Students examine the evidence for relatedness between species and change in life forms over time using evidence from paleontology, structural morphology, molecular homology and comparative genomics. Students examine the evidence for structural trends in the human fossil record, recognising that interpretations can be contested, refined or replaced when challenged by new evidence.

Students demonstrate and apply their knowledge of how life changes and responds to challenges through investigation of a selected case study, data analysis and/or bioethical issue. Examples of investigation topics include, but are not limited to: deviant cell behaviour and links to disease; autoimmune diseases; allergic reactions; development of immunotherapy strategies; use and application of bacteriophage therapy; prevention and eradication of disease; vaccinations; bioprospecting for new medical treatments; trends, patterns and evidence for evolutionary relationships; population and species changes over time in non-animal communities such as forests and microbiota; monitoring of gene pools for conservation planning; role of selective breeding programs in conservation of endangered species; or impact of new technologies on the study of evolutionary biology.

Entry: 

Prior to entry into Unit 1 and 2 Biology, students should have successfully completed two semesters of Science in Year 10, including the Biology and Chemistry elective. 

Prior to entry into Unit 3 Biology, students should have successfully completed Unit 1 and 2 Biology. Students must undertake Unit 3 prior to undertaking Unit 4. Students entering at Unit 3 should undertake some preparatory work as specified by the Biology teacher prior to commencing the unit.  

ASSESSMENT:

Units 1 & Unit 2:  These units are assessed internally, including end of year exams. Internal assessment includes practical work and reports, topic tests and assignments.  

Unit 3 & Unit 4:  The student's level of achievement will be determined by school-assessed coursework and examination. Percentage contributions to the final assessment are as follows:

Unit 3 school-assessed coursework: 20%.  

Unit 4 school assessed coursework: 30%

End of year exam: 50%

Contact Time:

Lessons per week: 

5 periods 

Subject duration: 

Year long

Further information:

Head of science: Lisa Crute