Probabilidad
Ley de Laplace
Probabilidad de la unión de sucesos incompatibles
A B =
p(A B) = p(A) + p(B)
Probabilidad de la unión de sucesos compatibles
A B ≠
p(A B) = p(A) + p(B) − p(A B)
Probabilidad condicionada
Probabilidad de la intersección de sucesos independientes
p(A B) = p(A) · p(B)
Probabilidad de la intersección de sucesos dependientes
p(A B) = p(A) · p(B/A)
Probabilidad de la diferencia de sucesos
Teorema de la probabilidad total
p(B) = p(A1) · p(B/A1) + p(A2) · p(B/A2 ) + ... + p(An) · p(B/An )
Teorema de Bayes
0 ≤ p(A) ≤ 1
p(E) = 1
Ejercicios
Hallar la probabilidad de que al levantar unas fichas de dominó se obtenga un número de puntos mayor que 9 o que sea múltiplo de 4.
Se lanzan dos dados al aire y se anota la suma de los puntos obtenidos. Se pide:
1La probabilidad de que salga el 7.
2La probabilidad de que el número obtenido sea par.
3La probabilidad de que el número obtenido sea múltiplo de tres.
Se extrae una bola de una urna que contiene 4 bolas rojas, 5 blancas y 6 negras, ¿cuál es la probabilidad de que la bola sea roja o blanca? ¿Cuál es la probabilidad de que no sea blanca?
Dos hermanos salen de casa. El primero mata un promedio de 2 piezas cada 5 disparos y el segundo una pieza cada 2 disparos. Si los dos disparan al mismo tiempo a una misma pieza, ¿cuál es la probabilidad de que la maten?
La probabilidad de que un hombre viva 20 años es ¼ y la de que su mujer viva 20 años es 1/3. Se pide calcular la probabilidad:
1De que ambos vivan 20 años.
2De que el hombre viva 20 años y su mujer no.
3De que ambos mueran antes de los 20 años.
En un centro escolar los alumnos pueden optar por cursar como lengua extranjera inglés o francés. En un determinado curso, el 90% de los alumnos estudia inglés y el resto francés. El 30% de los que estudian inglés son chicos y de los que estudian francés son chicos el 40%. El elegido un alumno al azar, ¿cuál es la probabilidad de que sea chica?
p(chica) = 0.9 · 0.7 + 0.1 · 0.6 = 0.69
De una baraja de 48 cartas se extrae simultáneamente dos de ellas. Calcular la probabilidad de que:
1 Las dos sean copas.
2Al menos una sea copas.
3Una sea copa y la otra espada.
Un taller sabe que por término medio acuden: por la mañana tres automóviles con problemas eléctricos, ocho con problemas mecánicos y tres con problemas de chapa, y por la tarde dos con problemas eléctricos, tres con problemas mecánicos y uno con problemas de chapa.
1 Hacer una tabla ordenando los datos anteriores.
2Calcular el porcentaje de los que acuden por la tarde.
3Calcular el porcentaje de los que acuden por problemas mecánicos.
4Calcular la probabilidad de que un automóvil con problemas eléctricos acuda por la mañana.
Un estudiante cuenta, para un examen con la ayuda de un despertador, el cual consigue despertarlo en un 80% de los casos. Si oye el despertador, la probabilidad de que realiza el examen es 0.9 y, en caso contrario, de 0.5.
1 Si va a realizar el examen, ¿cuál es la probabilidad de que haya oído el despertador?
2Si no realiza el examen, ¿cuál es la probabilidad de que no haya oído el despertador?
En una estantería hay 60 novelas y 20 libros de poesía. Una persona A elige un libro al azar de la estantería y se lo lleva. A continuación otra persona B elige otro libro al azar.
1 ¿Cuál es la probabilidad de que el libro seleccionado por B sea una novela?
2Si se sabe que B eligió una novela, ¿cuál es la probabilidad de que el libro seleccionado por A sea de poesía?
Se supone que 25 de cada 100 hombres y 600 de cada 1000 mujeres usan gafas. Si el número de mujeres es cuatro veces superior al de hombres, se pide la probabilidad de encontrarnos:
1 Con una persona sin gafas.
2Con una mujer con gafas.
En una casa hay tres llaveros A, B y C; el primero con cinco llaves, el segundo con siete y el tercero con ocho, de las que sólo una de cada llavero abre la puerta del trastero. Se escoge a Lázaro llavero y, de él, una llave intenta abrir el trastero. Se pide:
1 ¿Cuál será la probabilidad de que se acierte con la llave?
2¿Cuál será la probabilidad de que el llavero escogido sea el tercero y la llave no abra?
3Y si la llave escogida es la correcta, ¿cuál será la probabilidad de que pertenezca al primer llavero A?