Trang 1: 1.Phương pháp tính ngược từ cuối_2.Thế nào là... Giả thiết tạm_3.Rút gọn phân số
4.Dấu hiệu chia hết_5.Bài toán CHIA TRÂU_6.Bài toán về phép chia có dư-Lớp 3
Trang 2: ...........
1.PHƯƠNG PHÁP TÍNH NGƯỢC TỪ CUỐI
Có một số bài toán cho biết kết quả sau khi thực hiện liên tiếp một số phép tính đối với số phải tìm. Khi giải các bài toán dạng này, ta thường dùng phương pháp tính ngược từ cuối (đôi khi còn gọi là phương pháp suy ngược từ cuối)
Khi giải toán bằng phương pháp tính ngược từ cuối, ta thực hiện liên tiếp các phép tính ngược với các phép tính đã cho trong đề bài. Kết quả tìm được trong bước trước chính là thành phần đã biết của phép tính liền sau đó. Sau khi thực hiện hết dãy các phép tính ngược với các phép tính đã cho trong đề bài, ta nhận được kết quả cần tìm.
Những bài toán giải được bằng phương pháp tính ngược từ cuối thường cũng giải được bằng phương pháp đại số hoặc phương pháp ứng dụng đồ thị (xem các số tiếp theo).
Ví dụ 1: Tìm một số, biết rằng tăng số đó gấp đôi, sau đó cộng với 16 rồi bớt đi 4 và cuối cùng chia cho 3 ta được kết quả bằng 12.
Phân tích: Trong bài này ta đã thực hiện liên tiếp đối với dãy số cần tìm dãy các phép tính dưới đây:
x 2, + 16, - 4, : 3 cho kết quả cuối cùng bằng 12.
- Ta có thể xác định được số trước khi chia cho 3 được kết quả là 12 (Tìm số bị chia khi biết số chia và thương số).
- Dựa vào kết quả tìm được ở bước 1, ta tìm được số trước khi bớt đi 4 (Tìm số bị trừ khi biết số trừ và hiệu số).
- Dựa vào kết quả tìm được ở bước 2, ta tìm được số trước khi cộng với 16 (Tìm số hạng chưa biết khi biết số hạng kia và tổng số).
- Dựa vào kết quả tìm được ở bước 3, ta tìm được số trước khi nhân với 2, chính là số cần tìm (Tìm thừa số chưa biết khi biết tích và thừa số kia).
Từ phân tích trên ta đi đến lời giải như sau:
Số trước khi chia cho 3 là:
12 x 3 = 36
Số trước khi bớt đi 4 là:
36 + 4 = 40
Số trước khi cộng với 16 là:
40 - 16 = 24
Số cần tìm là:
24 : 2 = 12
Trả lời: Số cần tìm là 12.
Ví dụ 2: Tìm ba số, biết rằng sau khi chuyển 14 đơn vị từ số thứ nhất sang số thứ hai, chuyển 28 đơn vị từ số thứ hai sang số thứ ba rồi chuyển 7 đơn vị từ số thứ ba sang số thứ nhất ta được ba số đều bằng 45.
Phân tích: Ta có thể minh họa các thao tác trong đề bài bằng sơ đồ sau:
Ta có:
Số thứ nhất: - 14; + 7 cho kết quả là 45
Số thứ hai: + 14; - 28 cho kết quả là 45
Số thứ ba: + 28; - 7 cho kết quả là 45
Từ phân tích trên ta đi đến lời giải của bài toán như sau:
Số thứ nhất là: 45 - 7 + 14 = 52.
Số thứ hai là: 45 + 28 - 14 = 49.
Số thứ ba là: 45 + 7 - 28 = 24.
Trả lời: Ba số cần tìm là: 52; 49 và 24.
Lời giải bài toán trên có thể thể hiện trong bảng sau:
Trả lời: Ba số cần tìm là: 52; 49 và 24.
Các bạn thử giải các bài toán sau bằng phương pháp tính ngược từ cuối:
Bài 1: Tìm một số, biết rằng giảm số đó đi 3 lần, sau đó cộng với 5, rồi nhân với 2 và cuối cùng chia cho 8 được kết quả bằng 4.
Bài 2: Tổng số của ba số bằng 96. Nếu chuyển từ số thứ hai sang số thứ nhất 3 đơn vị và sang số thứ ba 17 đơn vị, cuối cùng chuyển từ số thứ ba sang số thứ nhất 9 đơn vị thì số thứ nhất sẽ gấp đôi số thứ hai và bằng 2/5 số thứ ba. Tìm ba số đó.
Trần Diên Hiển
(Trường Đại học Sư phạm Hà Nội)
2.THẾ NÀO LÀ ....... GIẢ THIẾT TẠM
Trong các bài toán ở Tiểu học, có một dạng toán trong đó đề cập đến hai đối tượng (là người, vật hay sự việc) có những đặc điểm được biểu thị bằng hai số lượng chênh lệch nhau, chẳng hạn hai chuyển động có vận tốc khác nhau, hai công cụ lao động có năng suất khác nhau, hai loại vé có giá tiền khác nhau ...
Ta thử đặt ra một trường hợp cụ thể nào đó không xảy ra, không phù hợp với điều kiện bài toán, một khả năng không có thật , thậm chí một tình huống vô lí. Tất nhiên giả thiết này chỉ là tạm thời để chúng ta lập luận nhằm đưa bài toán về một tình huống quen thuộc đã biết cách giải hoặc lập luận để suy ra được cái phải tìm. Chính vì thế mà phương pháp giải toán này phải đòi hỏi có dức tưởng tượng phong phú, óc suy luận linh hoạt...
Những bài toán giải được bằng phương pháp giả thiết tạm có thể giải bằng phương pháp khác. Tuy nhiên, trong nhiều trường hợp, cách giải bằng giả thiết tạm thường gọn gàng và mang tính "độc đáo".
Ví dụ : Trước hết, ta hãy xét một bài toán cổ quen thuộc sau đây:
Vưa gà vừa chó
Bó lại cho tròn
Ba mươi sáu con
Một trăm chân chẵn
Hỏi mấy gà, mấy chó?
Cách 1:
(Cách giải quen thuộc)
Rõ ràng 36 con không thể là gà cả (vì khi đó có 2 x 36 = 72 chân!), cũng không thể là chó cả (vì khi đó có 4 x 36 = 144 chân!).
Bây giờ ta giả sử 36 con đều là chó cả (đây là giả thiết tạm), thì số chân sẽ là: 4 x 36 = 144 (chân).
Số chân dôi ra là: 144 - 100 = 44 (chân)
Sở dĩ như vậy là vì số chân của mỗi con chó hơn số chân của mỗi con gà là: 4 - 2 = 2 (chân).
Vậy số gà là: 44:2 = 22 (con).
Số chó là: 36 - 22 = 14 (con).
Cách 2:
Ta thử tìm một giả thiết tạm khác nữa nhé.
Giả thiết, mỗi con vật được "mọc" thêm một cái đầu nữa ! khi đó, mỗi con có hai đầu và tổng số đầu là:
2 x 36 = 72 (đầu)
Lúc này, mỗi con gà coá hai đầu và hai chân , Mỗi con chó có hai đầu bốn chân. Vởy số chân nhiều hơn số đầu là: 100 - 72 = 28 (cái)
Đối với gà thì số chân bằng số đầu, còn đối với chó có số chân nhiều hơn số đầu là: 4 - 2 = 2 (cái)
Suy ra số chó là: 28:2 = 14 (chó)
Số gà là: 36 - 14 = 22 (gà).
Cách 3:
Bây giờ ta giả thiết một tường họp thật vô lí nhé! Ta giả thiết mỗi con vật đều bị "chặt đi" một nửa số chân. Như vậy, mỗi con chó chỉ còn có hai chân và mỗi con gà chỉ con một chân. tổng số chân cũng chỉ còn một nửa, tức là:
100 : 2 = 50 (chân).
Bây giờ, ta lại giả thiết mỗi con chó phải "co" một chân lên để mỗi con vật chỉ có một chân, khi đó 36 con vật có 36 chân. Như vậy, số chân chó phải "co" lên là:
50 - 36 = 14 (chân). Vì mỗi con chó có một chân "co" nên suy ra có 14 con chó.
Vậy số gà là: 36 - 14 = 22 9con).
Cách 4:
Gợi ý : Giả sử mỗi con gà "mọc thêm" 2 chân, khi đó cả 36 con đều có 4 chân và tổng số chân là:
4 x 36 = 144 (chân)...
Mời các bạn tiếp tục đọc lập luận, đồng thời xét xem điều giả thiết tạm thời này dựa vào cách giải nào đã biết).
Cách 5:
Gợi ý : Giả sử mỗi con chó "bị chặt đi" 2 chân, khi đó cả 36 con đều có 2 chân và tổng số chân là:
2 x 36 = 72 (chân)...
(Mời bạn đọc tiếp tục lập luận, sau đó cũng xét xem giả thiết tạm thời này đã dựa vào cách giải quen thuộc nào nhé.)
Sau đây là một số bài vận dụng:
Bài tập 1:
Rạp Kim Đồng một buổi chiếu phim bán được 500 vé gồm hai loại 2000đ và 3000đ. Số tiền thu được là 1120000đ. Hỏi số vé bán mỗi laọi là bao nhiêu?
(Trả lời: 380 vé và 120 vé).
bài tập 2:(bài toán cổ)
Quýt ngon mỗi quả chia ba
Cam ngon mỗi quả chia ra làm mười
Mỗi người một miếng, trăm người
Có mười bẩy quả, chia rồi còn đâu!
Hỏi có mấy quả cam, mấy quả quýt?
(Trả lời: 7 quả cam, 10 quả quýt!)
Vũ Dương Thuỵ
3.RÚT GỌN PHÂN SỐ
Rút gọn một phân số đã cho là tìm một phân số bằng nó mà tử số và mẫu số này nhỏ hơn tủ số và mẫu số của phân số đã cho. Thông thường, khi rút gọn phân số là phải được một phân số tối giản. Cách rút gọn phân số : Cùng chia tử số và mẫu số cho một số tự nhiên lớn hơn 1. Điều quan trọng nhất là phải tìm được số tự nhiên đó để thực hiện việc rút gọn phân số. Việc này có thể thực hiện một lần hoặc vài lần mới tìm được phân số tối giản. dưới đây là một số ví dụ minh hoạ về cách tìm "số để rút gọn được".
1. Dựa và dấu hiệu chia hết
Ví dụ. Rút gọn mỗi phân số :6/8 (cùng chia 2); 27/36 (cùng chia 9); 15/40 (cùng chia 5).
2. Chia dần từng bước hoặc gộp các bước (theo quy tắc chia một số cho một tích).
Ví dụ. Rút gọn phân số 132 / 204
132 / 204 = 132:2 / 204:2 = 66 / 102;
66:2 / 102:2 = 33/51; 33:3 / 51:3 = 11/17
vật 132 / 204 = 11/17.
Vì 2 x 2 x 3 = 12 nên
132:12 / 204:12 = 11/17.
3. Dùng cách thử chọn theo các bước.
Ví dụ. Rút gọn phân số 26/65.
Bước 1: 26:2 = 13
Bước 2: 65:13 = 5
Bước 3: Cùng chia 13.
26:13 / 65:13 = 2/5.
4. Phân số có dạng đặc biệt.
Ví dụ. Rút gọn phân số 1133 / 1442.
Bước 1: 1133 : 11 = 103
Bước 2: 1442 :14 = 103
Bước 3: Cùng chia 103.
1133 / 1442 = 1133:103 / 1442:103 = 11/14.
Vận dụng những hiểu biét của mình, các em hãy tự giải các bài tập sau:
Rút gọn phân số: 35 / 91; 37 / 111; 119 / 153; 322 / 345; 1111 / 1313.
Đỗ Trung Hiệu
4.MỘT DẠNG TOÁN
DÙNG DẤU HIỆU CHIA HẾT
Trong tháng 9 các em lớp 5 đã học về dấu hiệu chia hết cho 2, 3, 5, 9. Các em đã được làm quen với dạng toán điền chữ số thích hợp vào dấu sao (*) thỏa mãn điều kiện chia hết cho một số nào đó.
Chẳng hạn :
Bài toán1 : (bài 4 trang16 SGK toán 5)
Viết chữ số thích hợp vào dấu sao (*) để được số chia hết cho 9 :
a) 4*95 ; b) 89*1; c) 891*; d) *891
ở các bài toán này ta chỉ cần dựa vào dấu hiệu chia hết cho 9 để tìm chữ số điền vào dấu *. Khi đã học hết dấu hiệu chia hết cho 2, 3, 5, 9, các em có thể giải các bài toán phối hợp các điều kiện chia hết để điền những chữ số thích hợp :
Bài toán 2 : Thay a, b trong số 2003ab bởi chữ số thích hợp để số này đồng thời chia hết cho 2, 5 và 9.
Phân tích : Tìm chữ số nào trước, muốn tìm chữ số ấy dựa vào dấu hiệu nào ?
b là chữ số tận cùng nên tìm b dựa vào dấu hiệu chia hết cho 2 và 5. Vậy tìm a sẽ dựa vào dấu hiệu chia hết cho 9. Một số chia hết cho 2 và 5 khi số đó có tận cùng là 0. Từ đó ta có cách giải sau.
Giải : Số 2003ab đồng thời chia hết cho 2 và 5 nên b = 0. Thay b = 0 vào số 2003ab ta được 2003a0. Số này chia hết cho 9 nên tổng các chữ số của nó chia hết cho 9. Vậy (2 +0 +0 +3 +a+0) chia hết cho 9 hay (5 +a) chia hết cho 9. Vì 5 chia cho 9 dư 5 nên a chỉ có thể là 4.
Ta biết rằng: A chia cho B dư r tức là :
- A - r chia hết cho B (1)
- A + (B - r) chia hết cho B (2)
Từ đó các bạn có thể giải quyết bài toán :
Bài toán 3 : Cho A = x459y. Hãy thay x, y bởi chữ số thích hợp để A chia cho 2 ; 5 và 9 đều dư 1.
Nhận xét : A chia cho 2 ; 5 và 9 đều dư 1 nên A - 1 đồng thời chia hết cho 2 ; 5 và 9. Vậy ta có thể giải bài toán dựa vào điều kiện (1) A - r chia hết cho B để giải.
Giải : Vì A chia cho 2 ; 5 và 9 đều dư 1 nên A - 1 chia hết cho 2 ; 5 và 9. Vậy chữ số tận cùng của A - 1 phải bằng 0, suy ra y = 1. Vì A - 1 chia hết cho 9 nên x + 4 + 5 + 9 + 0 chia hết cho 9 hay x + 18 chia hết cho 9. Do 18 chia hết cho 9 nên x chia hết cho 9, nhưng x là chữ số hàng cao nhất nên x khác 0. Từ đó x chỉ có thể bằng 9. Thay x = 9 ; y = 1 vào A ta được số 94591.
ở bài toán trên A chia cho các số có cùng số dư.
Bây giờ ta xét :
Bài toán 4 : Tìm số tự nhiên bé nhất chia cho 2 dư 1, chia cho 3 dư 2 ; chia cho 4 dư 3 và chia cho 5 dư 4.
Tuy các số dư khác nhau nhưng : 2 - 1 = 1 ; 3 - 2 = 1 ; 4 - 3 = 1 ; 5 - 4 = 1. Như vậy ta có thể sử dụng điều kiện (2) A + (B - r) chia hết cho B để giải bài toán này.
Giải : Gọi số cần tìm là A. Vì A chia cho 2 dư 1 và A chia cho 5 dư 4 nên A + 1 đồng thời chia hết cho 2 và 5. Vậy chữ số tận cùng của A + 1 là 0. Hiển nhiên A +1 không thể có 1 chữ số. Nếu A + 1 có 2 chữ số thì có dạng x0. Vì x0 chia hết cho 3 nên x chỉ có thể là 3 ; 6 ; 9 ta có số 30 ; 60 ; 90. Trong 3 số đó chỉ có 60 là chia hết cho 4.
Vậy A +1 = 60
A = 60 - 1
A = 59
Do đó số cần tìm là 59.
Bài viết này mới chỉ đề cập tới một phương pháp để vận dụng tiêu chuẩn chia hết cho các số. Giải các bài toán xác định các chữ số chưa biết của một số các bạn có thể tìm thêm những phương pháp khác và luyện tập qua các bài tập sau :
Bài 1 : Tìm số tự nhiên nhỏ nhất khác 1 sao cho khi chia cho 2 ; 3 ; 4 ; 5 và 7 đều dư 1.
Bài 2 : Cho số a765b ; tìm a ; b để khi thay vào số đã cho ta được số có 5 chữ số chia cho 2 dư 1 ; chia cho 5 dư 3 và chia cho 9 dư 7.
Bài 3 : Hãy viết thêm 3 chữ số vào bên phải số 567 để được số lẻ có 6 chữ số khác nhau, khi chia số đó cho 5 và 9 đều dư 1.
Bài 4 : Tìm số có 4 chữ số chia hết cho 2 ; 3 và 5, biết rằng khi đổi chõ các chữ số hàng đơn vị với hàng trăm hoặc hàng chục với hàng nghìn thì số đó không thay đổi.
Chúc các bạn thành công!
Phương Hoa
(Ngõ 201, Cầu giấy, Hà Nội)
5.BÀI TOÁN CHIA GIA TÀI
Các bạn vừa giải bài toán “Ôtôna đã làm thế nào?”. Đây là bài toán tương tự của bài toán dân gian:
“Một người nông dân nuôi được 17 con trâu. Trước khi qua đời, ông di chúc lại cho ba người con:
- Con cả được 1/2 đàn trâu.
- Con thứ được chia 1/3 đàn trâu.
- Con út được chia 1/9 đàn trâu.
Ba người con loay hoay không biết làm thế nào để chia gia tài mà không phải xẻ thịt các con trâu. Em hãy tìm cách giúp họ”.
Có thể giải bài toán như sau:
Em đem một con trâu (nếu không có trâu thật thì dùng trâu bằng gỗ chẳng hạn) đến nhập thêm vào 17 con trâu thành một đàn 18 con trâu. Sau đó:
- Chia cho người con cả 1/2 đàn, tức là: 18 : 2 = 9 (con trâu)
- Chia cho người con thứ 1/3 đàn, tức là: 18 : 3 = 6 (con trâu)
- Chia cho người con út 1/9 đàn, tức là: 18 : 9 = 2 (con trâu)
Vậy ba người con được vừa đúng:
9 + 6 + 2 = 17 (con trâu)
Còn em lại mang con trâu của mình về.
Cách giải trên tuy hơi lạ nhưng cũng dễ hiểu: Vì 17 không chia hết cho 2, cho 3 và cho 9; nhưng khi có thêm 1 con trâu nữa thì 18 liền chia hết cho 2, 3 và 9. Nhờ thế mà chia được.
Song cái độc đáo của cách giải này lại ở chỗ khác cơ.
Nếu ta để ý thì thấy ngay
9 con trâu > 17/2 con trâu (vì18/2>17/2 )
6 con trâu > 17/3 con trâu (vì 18/3>17/3 )
2 con trâu > 17/9 con trâu (vì 18/9>17/9 )
Do đó trong cách chia trên người con nào cũng được hưởng lợi. ấy thế mà em lại không mất thêm một con trâu nào (con trâu đem đến lại dắt về). Sao kì vậy? Chỗ bí hiểm ở đây là do tổng ba phân số biểu thị các phần được chia theo di chúc chưa bằng 1 (tức là chưa bằng cả đàn trâu), vì:
(1/2)+(1/3) +(1/9)=(9+6+2):18=17/18 (đàn trâu)
Như vậy, thật ra người cha đã chỉ di chúc chia cho các con có 17/18 đàn trâu mà thôi, còn thiếu 1/18 nữa thì mới đủ 18/18, tức là cả đàn trâu.
Thế nhưng nhờ em đem thêm 1 con trâu nữa tới nên đã chia được cho ba người con cả đàn trâu (hay đàn trâu, gồm 17 con). Do đó cả ba người con đều được chia nhiều hơn phần nêu ở di chúc nhưng em lại không tốn thêm một con trâu nào!
Thật là một bài toán độc đáo!
Phạm Đình Thực
(TP Hồ Chí Minh)
6.BÀI TOÁN VỀ PHÉP CHIA
CÓ DƯ Ở LỚP 3
Ở lớp 3 học sinh được học về phép chia có dư, cách thực hiện phép chia có dư, mối quan hệ giữa số dư và số chia. Trong quá trình luyện tập, thực hiện về phép chia có dư học sinh được làm quen với phép chia có dư. Việc giải bài toán này không có gì khác biệt so với “giải bài toán về phép chia hết”. Do đặc điểm của cách diễn đạt về phép chia nên cách trình bài giải có khác nhau.
Ví dụ 1 : Có 31 mét vải, may mỗi bộ quần áo hết 3 mét vải. Hỏi có thể may được nhiều nhất bao nhiêu bộ quần áo như thế và còn thừa mấy mét vải ?
Bài giải : Thực hiện phép chia ta có : 31 : 3 = 10 (dư1). Vậy có thể may được nhiều nhất là 10 bộ quần áo như thế và còn thừa 1 mét vải.
Đáp số : 10 bộ, thừa 1 mét vải.
Trong bài giải có hai điểm khác với việc trình bày bài giải bài toán đơn là : Kết quả của phép tính không ghi tên đơn vị, câu trả lời đặt sau phép tính.
Ví dụ 2 : Một lớp học có 33 học sinh. Phòng học của lớp đó chỉ có loại bàn 2 chỗ ngồi. Hỏi cần có ít nhất bao nhiêu bàn học như thế ?
Bài giải :
Thực hiện phép chia ta có : 33 : 2 = 16 (dư 1). Số bàn có 2 học sinh ngồi là 16 bàn, còn 1 học sinh chưa có chỗ ngồi nên cần có thêm 1 bàn nữa.
Vậy cần số bàn ít nhất là :
16 + 1 = 17 (cái bàn)
Đáp số: 17 cái bàn.
Trong bài giải này ngoài phép tính chia có dư, còn có phép cộng kết quả phép chia đó với 1 (cần lưu ý học sinh : số 1 này không phải là số dư).
Ví dụ 3 : Đoàn khách du lịch có 50 người, muốn thuê xe loại 4 chỗ ngồi. Hỏi cần thuê ít nhất bao nhiêu xe để chở hết số khách đó ?
Bài giải :
Thực hiện phép chia ta có : 50 : 4 = 12 (dư 2). Có 12 xe mỗi xe chở 4 người khách, còn 2 người khách chưa có chỗ nên cần có thêm 1 xe nữa.
Vậy số xe cần ít nhất là :
12 + 1 = 13 (xe).
Đáp số : 13 xe ô tô.
Ví dụ 4 : Cần có ít nhất bao nhiêu thuyền để chở hết 78 người của đoàn văn công qua sông, biết rằng mỗi thuyền chỉ ngồi được nhiều nhất là 6 người, kể cả người lái thuyền ?
Bài giải :
Mỗi thuyền chỉ chở được số khách nhiều nhất là :
6 - 1 = 5 (người)
Thực hiện phép chia ta có : 78 : 5 = 15 (dư 3). Có 15 thuyền, mỗi thuyền chở 5 người khách, còn 3 người khách chưa có chỗ ngồi nên cần có thêm 1 thuyền nữa.
Vậy số thuyền cần có ít nhất là :
15 + 1 = 16 (thuyền).
Đáp số : 16 thuyền.
Trong 4 ví dụ trên câu hỏi của bài toán về phép chia có dư đều có thuật ngữ “nhiều nhất” hoặc “ít nhất”. Tuy nhiên cũng có bài toán về phép chia có dư mà không cần có các thuật ngữ đó.
Ví dụ 5 : Năm nhuận có 366 ngày. Hỏi năm đó gồm bao nhiêu tuần lễ và mấy ngày ?
Bài giải :
Một tuần lễ có 7 ngày.
Thực hiện phép chia ta có : 366 : 7 = 52 (dư 2). Vậy năm nhuận gồm 52 tuần lễ và 2 ngày.
Đáp số : 52 tuần lễ và 2 ngày.
Ví dụ 6 : Hôm nay là chủ nhật. Hỏi 100 ngày sau sẽ là thứ mấy của tuần lễ ?
Bài giải :
Một tuần lễ có 7 ngày.
Thực hiện phép chia ta có : 100 : 7 = 14 (dư 2). Sau đúng 14 tuần lại đến ngày chủ nhật và hai ngày sau là ngày thứ ba. Vậy 100 ngày sau là ngày thứ ba trong tuần lễ.
Đáp số : ngày thứ ba.
Xin giới thiệu cùng bạn đọc tham khảo một bài toán hay trong Kì thi Olympic Đông Nam Á năm 2003 (Toán Tuổi thơ số 40) :
Bài toán : Một xe buýt cỡ vừa có thể chở 30 hành khách, một xe buýt cỡ nhỏ có thể chở 8 hành khách, một xe buýt cỡ lớn có thể chở 52 hành khách. Hỏi cần bao nhiêu xe buýt cỡ lớn để chở được tất cả hành khách của 8 xe buýt cỡ vừa đầy hành khách và 13 xe buýt cỡ nhỏ đầy hành khách ?
Đỗ Trung Hiệu
(Hà Nội)