Quintic B-spline polynomial for Solving Bagely-Torvik Fractional Differential Problems
Faraidun K. Hamasalh*1 and Karzan Abdulrahman Hamzah2
1Department of Mathematics, College of Education, University of Sulaimani- Sulaimani-Kurdistan region Iraq
2Ministry of Education, Azmar College for Gifted Students
*Corresponding author’s e-mail: faraidun.hamasalh@univsul.edu.iq
Original: 25 January 2020 Revised: 17 August 2020 Accepted: 26 September 2020 Published online: 20 December 2020
Doi Link:
Abstract
In this paper, we use Quintic B-spline function to drive some error analysis of fractional derivatives and finding numerical solution for certain type fractional differential equations. It is know that a class of control points related to the modulus of continuity can be found by matrices operations, and discuss the error estimations for numerical solutions finding by using quantic B-spline to be in good agreement with the exact solutions. Results are shown graphically and illustrated the method by several examples.
Key Words: Quintic B- spline, control points, Fractional derivative, Taylor series, Convergence analysis
References
[1] Hilfer, R. "Applications of Fractional Calculus in Physics". World Scientific; Singapore. (2000).
[2] Tarasov, V.E. "Fractional Dynamics". Nonlinear Physics Science; Springer. Berlin, Germany. (2007).
[3] Podlubny, I. "Fractional Differential Equations". Academic Press; Cambridge. MA, USA. (1998).
[4] Oldham, K.; Spanier, J. "The Fractional Calculus". Academic Press; Cambridge. MA, USA. (1974).
[5] Sabatier, J., Agrawal, O., Tenreiro Machado, J. A. "Advances in Fractional Calculus". Springer. Berlin, Germany. (2007).
[6] Lucas, T. R. "Error bounds for interpolation cubic splines order various end conditions". SIAM J. Numer. Anal. Vol. 11, No. 3, pp. 569 – 584. (1974).
[7] Zhanlav T., Mijiddorj R. "The local integro cubic splines and their approximation properties". Applied Mathematics Computation. Vol. 216, pp. 2215- 2219. (2010).
[8] Munguia, M., Bhatta, D. "Use of cubic b- spline in approximating solutions of boundary value problems". I. J. Applications and Applied Mathematics. Vol. 10, No. 2, pp. 750-771. (2015).
[9] Lakestania, M., Dehghan, M. "The construction of operational matrix of fractional derivatives using B-spline fractions". Communications in Nonlinear Science and Numerical Simulation. Vol. 17, No. 3, pp. 1149-1162, (2012). DOI: 10.1016/j.cnsns.2011.07.018.
[10] Bagely, R.L., Torvik, P.J. "Fractional Calculus-A Different Approach to the Analysis of Viscoelasically Damped Structures". AIAA Journal. Vol. 21, No. 5. (1983).
[11] Zahra, W. K. and Elkhply, S. M. "Cubic Spline Solution of Fractional Bagley-Torvik Equation". Electronic Journal of Mathematical Analysis and Applications. Vol. 1, No. 2, pp. 230-241. July (2013).
[12] Feng-Gong Lang Xiao -Ping Xu. "On Integro Quartic spline interpolation". Journal of Computation Applied Mathematics. Vol. 236, No. 17, pp. 4214-4226. (2012).
[13] Lang, F. G., Xu, X. P. "Quadratic B-spline collection method for fifth order boundary value problems". Journal of Computing. Vol. 92, No. 4, pp. 365-378. (2011).
[14] Pitolli, F. "A fractional b-spline collection method for the numerical solution of fractional Predator-Prey models". J. Fractal Fractional, MDPI. Vol. 2, No. 13, pp.1-16. (2018).
[15] Pedas, A., Tamme, E. "On the convergence of spline collection methods for solving fractional differential equations". J. Comput. Appl. Math. Vol. 235, pp. 216-230. (2014).
[16] Li, X. "Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method". Commun. Nonlinear Sci. Numer. Simul. Vol. 16, pp. 4134-3946. (2011).
[17] Ali, A. H. A., Gardner G. A., Gardner L. R. T. "Acillocation solution for Burger’s equation using cubic b-spline finite elements". Comput. Methods Appli. Mech. Engrg. Vol. 100, pp. 325-337. (1992).
[18] Ramadan, M. A., . El-Danaf T. S and Abd. Alael El. "A Numerical solution of Burger's equation using septic b-splines". Chaos Solitons and Fractals. Vol. 26, pp. 1249-1258. (2005).
[19] Daftardar-Gejji, V., Jafari, H. "Solving a multi-order fractional differential equation using a domain decomposition". J. Math. Anal. Appl. Vol. 189, pp. 541–548. (2007).
[20] Kumar, P., Agrawal, O. P. "An approximate method for numerical solution of fractional equations". J. Signal Process. Vol. 86, pp. 2602-2610. (2006).
[21] Miller, K.S., Ross, B. "An Introduction to the Fractional Calculus and Differential Equations". John Wiley, New York. (1993).
[22] Xiao-Jun Yang. "Generalized Local Fractional Taylor’s Formula with Local Fractional Derivative". Journal of Expert Systems. Vol. 1, No. 1. (2012).
[23] Kincaid, D. and Cheney, W. "Numerical Analysis". Mathematics of Scientific Computing, Third Edition, and Wadsworth group Brooks/Cole. (2002).
[24] Rahiny, M. "Applications of Fractional Differential Equations". Applied Mathematical Sciences. Vol. 4, No. 50, pp. 2453– 2461. (2010).
[25] Mohammed, P.O., and Hamasalh, F. K. "Twelfth degree spline with application to quadrature". Springer Plus (2016).5:2096, DOI 10.1186/s40064-016-3711-2.
[26] Hamasalh, F. K., Ali, A. H. "Stability Analysis of Some Fractional Differential Equations by Special type of Spline Function". JZS- Part A, Vol. 19, No. 1, (2017).
[27] Zahra, W.K., Elkholy S. M. "Cubic Spline Solution of Fractional Bagley-Torvik Equation". Electronic Journal of Mathematics Analysis and Applications. Vol. 1, No. 2, pp. 230-241. (2013).
[28] Faraidun K. Hamasalh. "Fractional Polynomial Spline for solving Differential Equations of Fractional Order". Math. Sci. Lett. Vol. 3, No. 4, pp. 291-296. (2015).
[29] Arshed, S., "Quintic B-spline method for time-fractional super diffusion fourth-order differential equation". Math. Sci. Vol. 18, 10 pages. (2016).