Create and manipulate arrays using numpy and Python
Use pandas to create and analyze data sets
Use matplotlib and seaborn libraries to create beautiful data visualisation
Understanding of Machine Learning and SciKit Learn
Work with various data formats within python, including: JSON,HTML, and MS Excel Worksheets.
SQL with Python
np.array
arr1*arr1 -> Matrix multiplikation
arr1-arr1 -> Matrix subtraction
1/arr -> Each element divided as 1/element
np.zeros(5)
np.ones((5,5))
np.eye(5) -> Identity matrix of 5*5
np.arange(5) -> Range
arr.copy()
arr.dtype -> Each element data type
arr.shape -> shape
arr.T -> Transpose the array
arr.swapaxes ->
np.arange(50).reshape((10,5))
np.dot
np.sqrt
np.exp
np.random.randn(10) -> 1D 10 elements with random numbers between 0 and 1
np.add(A,B)
np.maximum(A,B)
np.where(condition,A,B) for example, np.where(arr < 0,0,arr)
arr.mean -> Stats Mean
arr.std -> Stats Standard deviation
arr.var -> Stats variance
arr.sort
np.unique
np.save
np.load
pd.Series
pd.read_clipboard
pd.read_csv
pd.read_table
pd.to_csv
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from pandas import Series,DataFrame
Reference
http://docs.scipy.org/doc/numpy/reference/
http://docs.scipy.org/doc/numpy/reference/ufuncs.html#available-ufuncs