We all have seen many books and articles where one diagram attempts to capture the gist of the architecture of a system. But looking carefully at the set of boxes and arrows shown on these diagrams, it becomes clear that their authors have struggled hard to represent more on one blueprint than it can actually express. Are the boxes representing running programs? Or chunks of source code? Or physical computers? Or merely logical groupings of functionality? Are the arrows representing compilation dependencies? Or control flows? Or data flows? Usually it is a bit of everything. Does an architecture need a single architectural style? Sometimes the architecture of the software suffers scars from a system design that went too far into prematurely partitioning the software, or from an over-emphasis on one aspect of software development: data engineering, or run-time efficiency, or development strategy and team organization. Often also the architecture does not address the concerns of all its “customers” (or “stakeholders” as they are called at USC).
The 4+1 View Approach is an ‘architecture style’ to organize an application’s architecture representations into views to meet individual stakeholder’s needs. This is a view model. Views are used to describe the system from the viewpoint of different stakeholders, such as end-users, developers and project managers. The four views of the model are logical, development, process and physical view. In addition selected use cases or scenarios are used to illustrate the architecture serving as the 'plus one' view. Hence the model contains 4+1 views:[1]
Logical view : The logical view is concerned with the functionality that the system provides to end-users. UML Diagrams used to represent the logical view include Class diagram, Communication diagram, Sequence diagram.[2]
Development view : The development view illustrates a system from a programmer's perspective and is concerned with software management. This view is also known as the implementation view. It uses the UML Component diagram to describe system components. UML Diagrams used to represent the development view include the Package diagram.[2]
Process view : The process view deals with the dynamic aspects of the system, explains the system processes and how they communicate, and focuses on the runtime behavior of the system. The process view addresses concurrency, distribution, integrators, performance, and scalability, etc. UML Diagrams to represent process view include the Activity diagram.[2]
Physical view : The physical view depicts the system from a system engineer's point of view. It is concerned with the topology of software components on the physical layer, as well as the physical connections between these components. This view is also known as the deployment view. UML Diagrams used to represent physical view include the Deployment diagram.[2]
Scenarios : The description of an architecture is illustrated using a small set of use cases, or scenarios which become a fifth view. The scenarios describe sequences of interactions between objects, and between processes. They are used to identify architectural elements and to illustrate and validate the architecture design. They also serve as a starting point for tests of an architecture prototype. This view is also known as use case view.
https://en.wikipedia.org/wiki/4%2B1_architectural_view_model
https://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
http://www.sparxsystems.com/downloads/whitepapers/FCGSS_US_WP_Applying_4+1_w_UML2.pdf