※ III-V Compound Transistor
○ Introduction
* : Nanometre-scale electronics with III-V compound semiconductors, Jesus A. del Alamo. (Nature Review, 2011)
지난 50년 동안 전자 산업은 실리콘 기반 CMOS (Complementary Metal-Oxide-Semiconductor)기술로 인해 많은 발전을 이루어 왔다. 하지만 실리콘 물질 특성(mobility, band gap 등)와 scailing의 한계가 다다르고 있다. 이를 극복하기 위해, MOCVD(Meta-Organic Chemical Vapor Deposition)나 MBE(mocular beam epitaxy)를 이용해 만든 III-V족 화합물을 이용한 transistor에 대해 연구가 진행되고 있다. InGaAs/InP조합은 물질 간 lattice mismatch가 작고, electron mobility가 높아 많은 연구가 이루어지고 있는 분야이다. 또한, AlGaN/GaN 물질 조합도 큰 band gap, AlGaN/GaN heterojunction에서 생성된 2-DEG (2-Dimensional Electron Gas), 높은 electron saturation velocity 등의 뛰어난 물질 특성으로 인해 연구가 활발히 진행되고 있는 분야이다. NDSL에서는 이러한 물질들을 simulation과 소자 공정을 이용해 연구를 하고 있다.
For 50 years, electronics industry has been remarkably developed by an increase in the density of silicon complementary metal-oxide-semiconductor (CMOS) transistors and the enhancement of their electrical performance. However, silicon CMOS technologies various challenges such as material related performances and scaling, issues in achieving the subsequent technology nodes. In order to attain CMOS extension technologies, contiuous efforts are made to find a breakthrough by employing compound semiconductors epitaxially grown by metal-organic chemical vapor deposition or molecular beam epitaxy. For the first example, indium gallium arsenide (InGaAs) / Indium phosphide (InP) is a higly attractive III-V material combination due to little lattice mismatch, outstanding heterojunction transport property, and maturity in fabrication processing. The second example of III-V materials is gallium nitirde (GaN). Especially, AlGaN/GaN-based transistors have been researched and purposed for high power and high frequency applications due to their inherent material properties such as wide bandgap, high electron saturation velocity and high 2-D electron gas (2-DEG) density at AlGaN/GaN heterojunction. In our research group, these materials is researched by simulation and fabrication.
○ Our Research
- fabrication and simulation of III-V compound transistor
(a) Alpha step image, (b) AFM (Atomic Force microscopy) image and (c) microscope image of III-V compound semiconductor by NDSL
Simulation for silicon-compatible InGaAs-based junctionless field-effect transistor using InP buffer layer
Semiconductor Science and Technology, August 2013 [Jae hwa Seo et Al.]
Design of a Recessed-gate GaN-based MOSFET Using a Dual Gate Dielectric for High-power Applications
Journal of the Korean Physical Society, November 2014 [Young Jun Yoon et Al.]