Download Math 30 SQPs pdf
1) In the given figure, AB ∥ PQ. If AB = 6cm, PQ = 2cm, and OB = 3cm, then the length of OP is:
(a) 9cm
(b) 3cm
(c) 4cm
(d) 1cm
2) Assertion (A): The polynomial p(x) = x²+3x+3 has two real zeroes.
Reason (R): A quadratic polynomial can have at most two real zeroes.
3) Find, by prime factorisation, the LCM of the numbers 18180 and 7575. Also, find the HCF of the two numbers.
4) Prove that
5) If the system of linear equations: 2x+3y=7 & 2ax+(a+b)y=28 have infinite solutions, then find the values of 'a' & 'b'.
6) If
217x+131y = 913 &
131x + 217y = 827. Then, solve the equations for the values of x & y.
7) Which of the following are not the sides of a right triangle?
(a) 9cm, 15cm, 12cm
(b) 2cm, 1cm, √5cm
(c) 400mm, 300mm, 500mm
(d) 9cm, 5cm, 7cm
8) If cosecθ = 3/2, then 2(cosec²θ +cot²θ) is:
(a) 3
(b) 7
(c) 9
(d) 5
9) The value of sin²30° + cos²45° + cos²30° is :
(a) 1/2
(b) √3/2
(c) 3/2
(d) 2/3
10) In the given figure, if BC ∥ DE, then x is equal to:
(a) 3cm
(b) 4cm
(c) 7cm
(d) 4.7 (approx)
11) A vertical stick 30m long casts a shadow 15m long on the ground. At the same time, a tower casts a shadow 75m long on the ground. The height of the tower is:
(a) 150m
(b) 100m
(c) 25m
(d) 200m
12) If A is an acute angle in a right ∆ABC, right angled at B, then the value of sinA+cosA is
(a) equal to one
(b) greater than one
(c) less than one
(d) Equal to two
13) If tanA = 5/12, then the value of [sinA+cosA] [secA] is
(a) 6/13
(b) 7/12
(c) 17/12
(d) 12/17
14) If 3cosθ = 2sinθ, then the value of (4sinθ - 3cosθ)/(2sinθ + 6cosθ) is:
(a) 1/8
(b) 1/3
(c) 1/2
(d) 1/4
15) 2sin2θ = √3, then the value of θ is
(a) 90°
(b) 30°
(c) 45°
(d) 60°
16) sinθ = cosθ, then the value of cosecθ is
(a) 2
(b) 1
(c) 2/√3
(d) √2
17) 9sec²θ - 9tan²θ is equal to:
(a) 1
(b) -1
(c) 9
(d) -9
18) The value of the expression [(sec²θ-1) (1-cosec²θ)] is
(a) -1
(b) 1
(c) 0
(d) 1/2
19) (1+tan²A) / (1+cot²A) =
(a) tan²A
(b) sec²A
(c) cosA
(d) sinA
20) Which of the following is not defined
(a) cos0°
(b) tan45°
(c) sec90°
(d) sin90°
21) If sinθ = 1/2, then the value of sinθ(sinθ - cosecθ) is
(a) 3/4
(b) -3/4
(c) √3/2
(d) -√3/2
22) The value of (2tan30°)/(1-tan²30°) is equal to
(a) cos60°
(b) sin60°
(c) tan60°
(d) sin30°
23) Given that sinA = 1/2 and cosB = 1/√2, then the value of A+B is
(a) 30°
(b) 45°
(c) 75°
(d) 15°
24) If in the two triangles ABC and PQR, AB/QR = BC/PR = CA/PQ, then
(a) ∆ABC ~ ∆PQR
(b) ∆PQR ~ ∆CAB
(c) ∆CBA ~ ∆PQR
(d) ∆BCA ~ ∆PQR
25) Given that sinα = 1/2 and cosβ = 1/2, then the value of (α+β) is
(a) 0°
(b) 30°
(c) 60°
(d) 90°
26) If cosecθ - cotθ = 1/3, then the value of cosecθ + cotθ is
(a) -1/3
(b) 3
(c) -3
(d) 0
27) State and prove the Basic Proportionality Theorem.
28) In the given figure, DE ∥ BC. The value of x is
(a) 4
(b) 6
(c) 8
(d) 10
29) In the given figure, DE ∥ BC, AD=3cm, BD=4cm, and BC=14cm, then DE is equal to
(a) 7cm
(b) 6cm
(c) 4cm
(d) 3cm
30) In the given figure, AD=3cm, AE=5cm, BD=4cm, CE=4cm, CF=2cm, BF=2.5cm, then
(a) DE ∥ BC
(b) DF ∥ AC
(c) EF ∥ AB
(d) None of these
31) In the given figure, if AB ∥ DC, find the value of x.
(a) 5
(b) 7
(c) 6
(d) 4
32) Sides AB and BE of a right triangle, right angled at B are of lengths 16cm and 8cm respectively. Find the length of the side of the largest square FDGB that can be inscribed in the triangle ABE.
(a) 32/3 cm
(b) 16/3 cm
(c) 8/3 cm
(d) 4/3 cm
33) In the following figure, DE ∥ OQ and DF ∥ OR. Show that EF ∥ QR.