MPU-6050+8x8 BiColor

今回は、PSoC 5LPを使ってMPU-6050の出力を8x8 BiColor LEDに表示してみます。

PSoc Creatorで下記のようにI2C_1, Pin_1, PWM_1,Clock_1を定義します。

ここでは接続を示すために、8x8BiColor LED Matrix, MPU-6050, LED, 抵抗などが記述されていますが、

実際にPSoC Creatorで記述するのは、I2C_1, Pin_1, PWM_1, Clock1のみです。

I2C_1のConfiguration

PWM_1のConfiguration

次にPin Assignを行います。

ビルドオプションの変更:下記のようにビルドオプションを変更します。 Command LineのCustom Flagsに-std=c99をセットします。

main.cを選択して、右クリック、Build Settings...を選択。

リンカーオプションの変更:下記のようにリンカーオプションを変更します。

メインメニューからProjectを選択、Build Settings..を選択、LinkerのGeneralのAdditional Librariesにmを入れます。

コード:

main.c

#include "project.h"

#include <stdbool.h>

#include <math.h>

#define bool _Bool

#define true 1

#define false 0

#define min(a, b) ((a) < (b) ? (a) : (b))

void I2CDev_initialize(void);

void I2CDev_cleanup(void);

bool I2CDev_readByte(uint8_t devAddr, uint8_t regAddr, uint8_t *data);

bool I2CDev_readBytes(uint8_t devAddr, uint8_t regAddr, uint8_t *data, uint8_t length);

int8_t I2CDev_readWords(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint16_t *data);

int8_t I2CDev_readWord(uint8_t devAddr, uint8_t regAddr, uint16_t *data, uint16_t timeout);

int8_t I2CDev_readBit(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint8_t *data, uint16_t timeout);

int8_t I2CDev_readBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t *data, uint16_t timeout);

int8_t I2CDev_readBits(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint8_t *data, uint16_t timeout);

int8_t I2CDev_readBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t *data, uint16_t timeout);

bool I2CDev_writeCommand(uint8_t devAddr, uint8_t command);

bool I2CDev_writeByte(uint8_t devAddr, uint8_t regAddr, uint8_t data);

bool I2CDev_writeBytes(uint8_t devAddr, uint8_t regAddr, uint8_t *data, uint8_t length);

bool I2CDev_writeWords(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint16_t* data);

bool I2CDev_writeWord(uint8_t devAddr, uint8_t regAddr, uint16_t data);

bool I2CDev_writeBit(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint8_t data);

bool I2CDev_writeBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t data);

bool I2CDev_writeBits(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint8_t data);

bool I2CDev_writeBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t data);

static uint8_t I2CDev_devAddr;

void I2CDev_initialize(void)

{

I2C_1_Start();

}

void I2CDev_cleanup(void)

{

I2C_1_Stop();

}

bool I2CDev_readByte(uint8_t devAddr, uint8_t regAddr, uint8_t *data)

{

I2C_1_MasterSendStart(devAddr, I2C_1_WRITE_XFER_MODE);

I2C_1_MasterWriteByte(regAddr);

I2C_1_MasterSendRestart(devAddr, I2C_1_READ_XFER_MODE);

*data = I2C_1_MasterReadByte(I2C_1_ACK_DATA);

I2C_1_MasterSendStop();

return true;

}

bool I2CDev_readBytes(uint8_t devAddr, uint8_t regAddr, uint8_t *data, uint8_t length)

{

uint8_t i=0;

I2C_1_MasterSendStart(devAddr, I2C_1_WRITE_XFER_MODE);

I2C_1_MasterWriteByte(regAddr);

I2C_1_MasterSendRestart(devAddr, I2C_1_READ_XFER_MODE);

while (i++ < (length-1)) {

*data++ = I2C_1_MasterReadByte(I2C_1_ACK_DATA);

}

*data = I2C_1_MasterReadByte(I2C_1_NAK_DATA);

I2C_1_MasterSendStop();

return true;

}

int8_t I2CDev_readWords(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint16_t *data)

{

int8_t count;

for (uint8_t k = 0; k < length * 2; k += length * 2) {

I2C_1_MasterSendStart(devAddr, I2C_1_WRITE_XFER_MODE);

I2C_1_MasterWriteByte(regAddr);

I2C_1_MasterSendRestart(devAddr, I2C_1_READ_XFER_MODE);

bool msb = true; // starts with MSB, then LSB

for (; count < length;) {

if (msb) {

// first byte is bits 15-8 (MSb=15)

data[count] = I2C_1_MasterReadByte(I2C_1_ACK_DATA) << 8;

} else {

// second byte is bits 7-0 (LSb=0)

data[count] |= I2C_1_MasterReadByte(I2C_1_ACK_DATA);

count++;

}

msb = !msb;

}

}

I2C_1_MasterSendStop();

return count;

}

int8_t I2CDev_readWord(uint8_t devAddr, uint8_t regAddr, uint16_t *data, uint16_t timeout)

{

return I2CDev_readWords(devAddr, regAddr, 1, data);

}

int8_t I2CDev_readBit(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint8_t *data, uint16_t timeout)

{

uint8_t b;

uint8_t count = I2CDev_readByte(devAddr, regAddr, &b);

*data = b & (1 << bitNum);

return count;

}

int8_t I2CDev_readBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t *data, uint16_t timeout)

{

uint16_t b;

uint8_t count = I2CDev_readWord(devAddr, regAddr, &b, timeout);

*data = b & (1 << bitNum);

return count;

}

int8_t I2CDev_readBits(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint8_t *data, uint16_t timeout)

{

// 01101001 read byte

// 76543210 bit numbers

// xxx args: bitStart=4, length=3

// 010 masked

// -> 010 shifted

uint8_t count, b;

if ((count = I2CDev_readByte(devAddr, regAddr, &b)) != 0) {

uint8_t mask = ((1 << length) - 1) << (bitStart - length + 1);

b &= mask;

b >>= (bitStart - length + 1);

*data = b;

}

return count;

}

int8_t I2CDev_readBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t *data, uint16_t timeout)

{

// 1101011001101001 read byte

// fedcba9876543210 bit numbers

// xxx args: bitStart=12, length=3

// 010 masked

// -> 010 shifted

uint8_t count;

uint16_t w;

if ((count = I2CDev_readWord(devAddr, regAddr, &w, timeout)) != 0) {

uint16_t mask = ((1 << length) - 1) << (bitStart - length + 1);

w &= mask;

w >>= (bitStart - length + 1);

*data = w;

}

return count;

}

bool I2CDev_writeCommand(uint8_t devAddr, uint8_t command)

{

I2C_1_MasterSendStart(devAddr, I2C_1_WRITE_XFER_MODE);

I2C_1_MasterWriteByte(command);

I2C_1_MasterSendStop();

return true;

}

bool I2CDev_writeByte(uint8_t devAddr, uint8_t regAddr, uint8_t data)

{

I2C_1_MasterSendStart(devAddr, I2C_1_WRITE_XFER_MODE);

I2C_1_MasterWriteByte(regAddr);

I2C_1_MasterWriteByte(data);

I2C_1_MasterSendStop();

return true;

}

bool I2CDev_writeBytes(uint8_t devAddr, uint8_t regAddr, uint8_t *data, uint8_t length)

{

uint8_t i;

I2C_1_MasterSendStart(devAddr, I2C_1_WRITE_XFER_MODE);

I2C_1_MasterWriteByte(regAddr);

for (i = 0; i < length; i++)

{

I2C_1_MasterWriteByte(*(data+i));

}

I2C_1_MasterSendStop();

return true;

}

bool I2CDev_writeWords(uint8_t devAddr, uint8_t regAddr, uint8_t length, uint16_t* data)

{

I2C_1_MasterSendStart(devAddr, I2C_1_WRITE_XFER_MODE);

I2C_1_MasterWriteByte(regAddr);

for (uint8_t i = 0; i < length * 2; i++) {

I2C_1_MasterWriteByte((uint8_t)((data[i] >> 8) & 0xFF));

I2C_1_MasterWriteByte( (uint8_t)(data[i++] & 0xFF));

}

I2C_1_MasterSendStop();

return true;

}

bool I2CDev_writeWord(uint8_t devAddr, uint8_t regAddr, uint16_t data)

{

return I2CDev_writeWords(devAddr, regAddr, 1, &data);

}

bool I2CDev_writeBit(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint8_t data)

{

uint8_t b;

I2CDev_readByte(devAddr, regAddr, &b);

b = (data != 0) ? (b | (1 << bitNum)) : (b & ~(1 << bitNum));

return I2CDev_writeByte(devAddr, regAddr, b);

}

bool I2CDev_writeBitW(uint8_t devAddr, uint8_t regAddr, uint8_t bitNum, uint16_t data)

{

uint16_t w;

I2CDev_readWord(devAddr, regAddr, &w, 0);

w = (data != 0) ? (w | (1 << bitNum)) : (w & ~(1 << bitNum));

return I2CDev_writeWord(devAddr, regAddr, w);

}

bool I2CDev_writeBits(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint8_t data)

{

// 010 value to write

// 76543210 bit numbers

// xxx args: bitStart=4, length=3

// 00011100 mask byte

// 10101111 original value (sample)

// 10100011 original & ~mask

// 10101011 masked | value

uint8_t b;

if (I2CDev_readByte(devAddr, regAddr, &b) != 0) {

uint8_t mask = ((1 << length) - 1) << (bitStart - length + 1);

data <<= (bitStart - length + 1); // shift data into correct position

data &= mask; // zero all non-important bits in data

b &= ~(mask); // zero all important bits in existing byte

b |= data; // combine data with existing byte

return I2CDev_writeByte(devAddr, regAddr, b);

} else {

return false;

}

}

bool I2CDev_writeBitsW(uint8_t devAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint16_t data)

{

// 010 value to write

// fedcba9876543210 bit numbers

// xxx args: bitStart=12, length=3

// 0001110000000000 mask word

// 1010111110010110 original value (sample)

// 1010001110010110 original & ~mask

// 1010101110010110 masked | value

uint16_t w;

if (I2CDev_readWord(devAddr, regAddr, &w, 0) != 0) {

uint16_t mask = ((1 << length) - 1) << (bitStart - length + 1);

data <<= (bitStart - length + 1); // shift data into correct position

data &= mask; // zero all non-important bits in data

w &= ~(mask); // zero all important bits in existing word

w |= data; // combine data with existing word

return I2CDev_writeWord(devAddr, regAddr, w);

} else {

return false;

}

}

//------------------------------------------------------------------------------------------------------------------------------

#define LED_ON 1

#define LED_OFF 0

#define LED_RED 1

#define LED_YELLOW 2

#define LED_GREEN 3

#define HT16K33_BLINK_CMD 0x80

#define HT16K33_BLINK_DISPLAYON 0x01

#define HT16K33_BLINK_OFF 0

#define HT16K33_BLINK_2HZ 1

#define HT16K33_BLINK_1HZ 2

#define HT16K33_BLINK_HALFHZ 3

#define HT16K33_CMD_BRIGHTNESS 0xE0

#define SEVENSEG_DIGITS 5

#define ADAFRUIT_LEDBACKPACK_DEFAULT_ADDR 0x70 //b'1110000

uint8_t LED8x8bi_i2c_addr = ADAFRUIT_LEDBACKPACK_DEFAULT_ADDR;

uint16_t LED8x8bi_displaybuffer[8];

uint8_t LED8x8bi_rotation = 1;

#define swap(a, b) { int16_t t = a; a = b; b = t; }

#define _BV(bit) (1<<(bit))

void LED8x8bi_setBrightness(uint8_t b)

{

if (b > 15) b = 15;

I2CDev_writeCommand(LED8x8bi_i2c_addr, HT16K33_CMD_BRIGHTNESS | b);

}

void LED8x8bi_blinkRate(uint8_t b)

{

if (b > 3) b = 0; // turn off if not sure

I2CDev_writeCommand(LED8x8bi_i2c_addr, HT16K33_BLINK_CMD | HT16K33_BLINK_DISPLAYON | (b << 1));

}

void LED8x8bi_begin(uint8_t _addr)

{

LED8x8bi_i2c_addr = _addr;

I2CDev_writeCommand(LED8x8bi_i2c_addr, 0x21); // turn on oscillator

LED8x8bi_blinkRate(HT16K33_BLINK_OFF);

LED8x8bi_setBrightness(15); // max brightness

}

void LED8x8bi_writeDisplay(void)

{

uint8_t buffer[16];

uint8_t i,j;

j=0;

for (i=0;i<8;i++)

{

buffer[j++] = LED8x8bi_displaybuffer[i] & 0xFF;

buffer[j++] = (LED8x8bi_displaybuffer[i & 0xF] >> 8) & 0xFF;

}

I2CDev_writeBytes(LED8x8bi_i2c_addr, 0, buffer, 16);

}

void LED8x8bi_clear(void)

{

for (uint8_t i=0; i<8; i++) {

LED8x8bi_displaybuffer[i] = 0;

}

}

void LED8x8bi_all_yellow(void)

{

for (uint8_t i=0; i<8; i++) {

LED8x8bi_displaybuffer[i] = 0xFFFF;

}

}

void LED8x8bi_all_yellow_1(void)

{

for (uint8_t i=0; i<8; i++) {

LED8x8bi_displaybuffer[i] = 0x0101;

}

}

void LED8x8bi_all_red(void)

{

for (uint8_t i=0; i<8; i++) {

LED8x8bi_displaybuffer[i] = 0xFF00;

}

}

void LED8x8bi_all_red_1(void)

{

for (uint8_t i=0; i<8; i++) {

LED8x8bi_displaybuffer[i] = 0x0100;

}

}

void LED8x8bi_all_green(void)

{

for (uint8_t i=0; i<8; i++) {

LED8x8bi_displaybuffer[i] = 0x00FF;

}

}

void LED8x8bi_all_green_1(void)

{

for (uint8_t i=0; i<8; i++) {

LED8x8bi_displaybuffer[i] = 0x0001;

}

}

uint8_t LED8x8bi_getRotation(void)

{

return LED8x8bi_rotation;

}

void LED8x8bi_drawPixel(int16_t x, int16_t y, uint16_t color)

{

if ((y < 0) || (y >= 8)) return;

if ((x < 0) || (x >= 8)) return;

switch (LED8x8bi_getRotation()) {

case 1:

swap(x, y);

x = 8 - x - 1;

break;

case 2:

x = 8 - x - 1;

y = 8 - y - 1;

break;

case 3:

swap(x, y);

y = 8 - y - 1;

break;

}

if (color == LED_GREEN) {

// Turn on green LED.

LED8x8bi_displaybuffer[y] |= 1 << x;

// Turn off red LED.

LED8x8bi_displaybuffer[y] &= ~(1 << (x+8));

} else if (color == LED_RED) {

// Turn on red LED.

LED8x8bi_displaybuffer[y] |= 1 << (x+8);

// Turn off green LED.

LED8x8bi_displaybuffer[y] &= ~(1 << x);

} else if (color == LED_YELLOW) {

// Turn on green and red LED.

LED8x8bi_displaybuffer[y] |= (1 << (x+8)) | (1 << x);

} else if (color == LED_OFF) {

// Turn off green and red LED.

LED8x8bi_displaybuffer[y] &= ~(1 << x) & ~(1 << (x+8));

}

}

//------------------------------------------------------------------------------------------------------------------------------

#define MPU6050_ADDRESS_AD0_LOW 0x68 // address pin low (GND), default for InvenSense evaluation board

#define MPU6050_ADDRESS_AD0_HIGH 0x69 // address pin high (VCC)

#define MPU6050_DEFAULT_ADDRESS MPU6050_ADDRESS_AD0_LOW

#define MPU6050_RA_XG_OFFS_TC 0x00 //[7] PWR_MODE, [6:1] XG_OFFS_TC, [0] OTP_BNK_VLD

#define MPU6050_RA_YG_OFFS_TC 0x01 //[7] PWR_MODE, [6:1] YG_OFFS_TC, [0] OTP_BNK_VLD

#define MPU6050_RA_ZG_OFFS_TC 0x02 //[7] PWR_MODE, [6:1] ZG_OFFS_TC, [0] OTP_BNK_VLD

#define MPU6050_RA_X_FINE_GAIN 0x03 //[7:0] X_FINE_GAIN

#define MPU6050_RA_Y_FINE_GAIN 0x04 //[7:0] Y_FINE_GAIN

#define MPU6050_RA_Z_FINE_GAIN 0x05 //[7:0] Z_FINE_GAIN

#define MPU6050_RA_XA_OFFS_H 0x06 //[15:0] XA_OFFS

#define MPU6050_RA_XA_OFFS_L_TC 0x07

#define MPU6050_RA_YA_OFFS_H 0x08 //[15:0] YA_OFFS

#define MPU6050_RA_YA_OFFS_L_TC 0x09

#define MPU6050_RA_ZA_OFFS_H 0x0A //[15:0] ZA_OFFS

#define MPU6050_RA_ZA_OFFS_L_TC 0x0B

#define MPU6050_RA_SELF_TEST_X 0x0D //[7:5] XA_TEST[4-2], [4:0] XG_TEST[4-0]

#define MPU6050_RA_SELF_TEST_Y 0x0E //[7:5] YA_TEST[4-2], [4:0] YG_TEST[4-0]

#define MPU6050_RA_SELF_TEST_Z 0x0F //[7:5] ZA_TEST[4-2], [4:0] ZG_TEST[4-0]

#define MPU6050_RA_SELF_TEST_A 0x10 //[5:4] XA_TEST[1-0], [3:2] YA_TEST[1-0], [1:0] ZA_TEST[1-0]

#define MPU6050_RA_XG_OFFS_USRH 0x13 //[15:0] XG_OFFS_USR

#define MPU6050_RA_XG_OFFS_USRL 0x14

#define MPU6050_RA_YG_OFFS_USRH 0x15 //[15:0] YG_OFFS_USR

#define MPU6050_RA_YG_OFFS_USRL 0x16

#define MPU6050_RA_ZG_OFFS_USRH 0x17 //[15:0] ZG_OFFS_USR

#define MPU6050_RA_ZG_OFFS_USRL 0x18

#define MPU6050_RA_SMPLRT_DIV 0x19

#define MPU6050_RA_CONFIG 0x1A

#define MPU6050_RA_GYRO_CONFIG 0x1B

#define MPU6050_RA_ACCEL_CONFIG 0x1C

#define MPU6050_RA_FF_THR 0x1D

#define MPU6050_RA_FF_DUR 0x1E

#define MPU6050_RA_MOT_THR 0x1F

#define MPU6050_RA_MOT_DUR 0x20

#define MPU6050_RA_ZRMOT_THR 0x21

#define MPU6050_RA_ZRMOT_DUR 0x22

#define MPU6050_RA_FIFO_EN 0x23

#define MPU6050_RA_I2C_MST_CTRL 0x24

#define MPU6050_RA_I2C_SLV0_ADDR 0x25

#define MPU6050_RA_I2C_SLV0_REG 0x26

#define MPU6050_RA_I2C_SLV0_CTRL 0x27

#define MPU6050_RA_I2C_SLV1_ADDR 0x28

#define MPU6050_RA_I2C_SLV1_REG 0x29

#define MPU6050_RA_I2C_SLV1_CTRL 0x2A

#define MPU6050_RA_I2C_SLV2_ADDR 0x2B

#define MPU6050_RA_I2C_SLV2_REG 0x2C

#define MPU6050_RA_I2C_SLV2_CTRL 0x2D

#define MPU6050_RA_I2C_SLV3_ADDR 0x2E

#define MPU6050_RA_I2C_SLV3_REG 0x2F

#define MPU6050_RA_I2C_SLV3_CTRL 0x30

#define MPU6050_RA_I2C_SLV4_ADDR 0x31

#define MPU6050_RA_I2C_SLV4_REG 0x32

#define MPU6050_RA_I2C_SLV4_DO 0x33

#define MPU6050_RA_I2C_SLV4_CTRL 0x34

#define MPU6050_RA_I2C_SLV4_DI 0x35

#define MPU6050_RA_I2C_MST_STATUS 0x36

#define MPU6050_RA_INT_PIN_CFG 0x37

#define MPU6050_RA_INT_ENABLE 0x38

#define MPU6050_RA_DMP_INT_STATUS 0x39

#define MPU6050_RA_INT_STATUS 0x3A

#define MPU6050_RA_ACCEL_XOUT_H 0x3B

#define MPU6050_RA_ACCEL_XOUT_L 0x3C

#define MPU6050_RA_ACCEL_YOUT_H 0x3D

#define MPU6050_RA_ACCEL_YOUT_L 0x3E

#define MPU6050_RA_ACCEL_ZOUT_H 0x3F

#define MPU6050_RA_ACCEL_ZOUT_L 0x40

#define MPU6050_RA_TEMP_OUT_H 0x41

#define MPU6050_RA_TEMP_OUT_L 0x42

#define MPU6050_RA_GYRO_XOUT_H 0x43

#define MPU6050_RA_GYRO_XOUT_L 0x44

#define MPU6050_RA_GYRO_YOUT_H 0x45

#define MPU6050_RA_GYRO_YOUT_L 0x46

#define MPU6050_RA_GYRO_ZOUT_H 0x47

#define MPU6050_RA_GYRO_ZOUT_L 0x48

#define MPU6050_RA_EXT_SENS_DATA_00 0x49

#define MPU6050_RA_EXT_SENS_DATA_01 0x4A

#define MPU6050_RA_EXT_SENS_DATA_02 0x4B

#define MPU6050_RA_EXT_SENS_DATA_03 0x4C

#define MPU6050_RA_EXT_SENS_DATA_04 0x4D

#define MPU6050_RA_EXT_SENS_DATA_05 0x4E

#define MPU6050_RA_EXT_SENS_DATA_06 0x4F

#define MPU6050_RA_EXT_SENS_DATA_07 0x50

#define MPU6050_RA_EXT_SENS_DATA_08 0x51

#define MPU6050_RA_EXT_SENS_DATA_09 0x52

#define MPU6050_RA_EXT_SENS_DATA_10 0x53

#define MPU6050_RA_EXT_SENS_DATA_11 0x54

#define MPU6050_RA_EXT_SENS_DATA_12 0x55

#define MPU6050_RA_EXT_SENS_DATA_13 0x56

#define MPU6050_RA_EXT_SENS_DATA_14 0x57

#define MPU6050_RA_EXT_SENS_DATA_15 0x58

#define MPU6050_RA_EXT_SENS_DATA_16 0x59

#define MPU6050_RA_EXT_SENS_DATA_17 0x5A

#define MPU6050_RA_EXT_SENS_DATA_18 0x5B

#define MPU6050_RA_EXT_SENS_DATA_19 0x5C

#define MPU6050_RA_EXT_SENS_DATA_20 0x5D

#define MPU6050_RA_EXT_SENS_DATA_21 0x5E

#define MPU6050_RA_EXT_SENS_DATA_22 0x5F

#define MPU6050_RA_EXT_SENS_DATA_23 0x60

#define MPU6050_RA_MOT_DETECT_STATUS 0x61

#define MPU6050_RA_I2C_SLV0_DO 0x63

#define MPU6050_RA_I2C_SLV1_DO 0x64

#define MPU6050_RA_I2C_SLV2_DO 0x65

#define MPU6050_RA_I2C_SLV3_DO 0x66

#define MPU6050_RA_I2C_MST_DELAY_CTRL 0x67

#define MPU6050_RA_SIGNAL_PATH_RESET 0x68

#define MPU6050_RA_MOT_DETECT_CTRL 0x69

#define MPU6050_RA_USER_CTRL 0x6A

#define MPU6050_RA_PWR_MGMT_1 0x6B

#define MPU6050_RA_PWR_MGMT_2 0x6C

#define MPU6050_RA_BANK_SEL 0x6D

#define MPU6050_RA_MEM_START_ADDR 0x6E

#define MPU6050_RA_MEM_R_W 0x6F

#define MPU6050_RA_DMP_CFG_1 0x70

#define MPU6050_RA_DMP_CFG_2 0x71

#define MPU6050_RA_FIFO_COUNTH 0x72

#define MPU6050_RA_FIFO_COUNTL 0x73

#define MPU6050_RA_FIFO_R_W 0x74

#define MPU6050_RA_WHO_AM_I 0x75

#define MPU6050_SELF_TEST_XA_1_BIT 0x07

#define MPU6050_SELF_TEST_XA_1_LENGTH 0x03

#define MPU6050_SELF_TEST_XA_2_BIT 0x05

#define MPU6050_SELF_TEST_XA_2_LENGTH 0x02

#define MPU6050_SELF_TEST_YA_1_BIT 0x07

#define MPU6050_SELF_TEST_YA_1_LENGTH 0x03

#define MPU6050_SELF_TEST_YA_2_BIT 0x03

#define MPU6050_SELF_TEST_YA_2_LENGTH 0x02

#define MPU6050_SELF_TEST_ZA_1_BIT 0x07

#define MPU6050_SELF_TEST_ZA_1_LENGTH 0x03

#define MPU6050_SELF_TEST_ZA_2_BIT 0x01

#define MPU6050_SELF_TEST_ZA_2_LENGTH 0x02

#define MPU6050_SELF_TEST_XG_1_BIT 0x04

#define MPU6050_SELF_TEST_XG_1_LENGTH 0x05

#define MPU6050_SELF_TEST_YG_1_BIT 0x04

#define MPU6050_SELF_TEST_YG_1_LENGTH 0x05

#define MPU6050_SELF_TEST_ZG_1_BIT 0x04

#define MPU6050_SELF_TEST_ZG_1_LENGTH 0x05

#define MPU6050_TC_PWR_MODE_BIT 7

#define MPU6050_TC_OFFSET_BIT 6

#define MPU6050_TC_OFFSET_LENGTH 6

#define MPU6050_TC_OTP_BNK_VLD_BIT 0

#define MPU6050_VDDIO_LEVEL_VLOGIC 0

#define MPU6050_VDDIO_LEVEL_VDD 1

#define MPU6050_CFG_EXT_SYNC_SET_BIT 5

#define MPU6050_CFG_EXT_SYNC_SET_LENGTH 3

#define MPU6050_CFG_DLPF_CFG_BIT 2

#define MPU6050_CFG_DLPF_CFG_LENGTH 3

#define MPU6050_EXT_SYNC_DISABLED 0x0

#define MPU6050_EXT_SYNC_TEMP_OUT_L 0x1

#define MPU6050_EXT_SYNC_GYRO_XOUT_L 0x2

#define MPU6050_EXT_SYNC_GYRO_YOUT_L 0x3

#define MPU6050_EXT_SYNC_GYRO_ZOUT_L 0x4

#define MPU6050_EXT_SYNC_ACCEL_XOUT_L 0x5

#define MPU6050_EXT_SYNC_ACCEL_YOUT_L 0x6

#define MPU6050_EXT_SYNC_ACCEL_ZOUT_L 0x7

#define MPU6050_DLPF_BW_256 0x00

#define MPU6050_DLPF_BW_188 0x01

#define MPU6050_DLPF_BW_98 0x02

#define MPU6050_DLPF_BW_42 0x03

#define MPU6050_DLPF_BW_20 0x04

#define MPU6050_DLPF_BW_10 0x05

#define MPU6050_DLPF_BW_5 0x06

#define MPU6050_GCONFIG_FS_SEL_BIT 4

#define MPU6050_GCONFIG_FS_SEL_LENGTH 2

#define MPU6050_GYRO_FS_250 0x00

#define MPU6050_GYRO_FS_500 0x01

#define MPU6050_GYRO_FS_1000 0x02

#define MPU6050_GYRO_FS_2000 0x03

#define MPU6050_ACONFIG_XA_ST_BIT 7

#define MPU6050_ACONFIG_YA_ST_BIT 6

#define MPU6050_ACONFIG_ZA_ST_BIT 5

#define MPU6050_ACONFIG_AFS_SEL_BIT 4

#define MPU6050_ACONFIG_AFS_SEL_LENGTH 2

#define MPU6050_ACONFIG_ACCEL_HPF_BIT 2

#define MPU6050_ACONFIG_ACCEL_HPF_LENGTH 3

#define MPU6050_ACCEL_FS_2 0x00

#define MPU6050_ACCEL_FS_4 0x01

#define MPU6050_ACCEL_FS_8 0x02

#define MPU6050_ACCEL_FS_16 0x03

#define MPU6050_DHPF_RESET 0x00

#define MPU6050_DHPF_5 0x01

#define MPU6050_DHPF_2P5 0x02

#define MPU6050_DHPF_1P25 0x03

#define MPU6050_DHPF_0P63 0x04

#define MPU6050_DHPF_HOLD 0x07

#define MPU6050_TEMP_FIFO_EN_BIT 7

#define MPU6050_XG_FIFO_EN_BIT 6

#define MPU6050_YG_FIFO_EN_BIT 5

#define MPU6050_ZG_FIFO_EN_BIT 4

#define MPU6050_ACCEL_FIFO_EN_BIT 3

#define MPU6050_SLV2_FIFO_EN_BIT 2

#define MPU6050_SLV1_FIFO_EN_BIT 1

#define MPU6050_SLV0_FIFO_EN_BIT 0

#define MPU6050_MULT_MST_EN_BIT 7

#define MPU6050_WAIT_FOR_ES_BIT 6

#define MPU6050_SLV_3_FIFO_EN_BIT 5

#define MPU6050_I2C_MST_P_NSR_BIT 4

#define MPU6050_I2C_MST_CLK_BIT 3

#define MPU6050_I2C_MST_CLK_LENGTH 4

#define MPU6050_CLOCK_DIV_348 0x0

#define MPU6050_CLOCK_DIV_333 0x1

#define MPU6050_CLOCK_DIV_320 0x2

#define MPU6050_CLOCK_DIV_308 0x3

#define MPU6050_CLOCK_DIV_296 0x4

#define MPU6050_CLOCK_DIV_286 0x5

#define MPU6050_CLOCK_DIV_276 0x6

#define MPU6050_CLOCK_DIV_267 0x7

#define MPU6050_CLOCK_DIV_258 0x8

#define MPU6050_CLOCK_DIV_500 0x9

#define MPU6050_CLOCK_DIV_471 0xA

#define MPU6050_CLOCK_DIV_444 0xB

#define MPU6050_CLOCK_DIV_421 0xC

#define MPU6050_CLOCK_DIV_400 0xD

#define MPU6050_CLOCK_DIV_381 0xE

#define MPU6050_CLOCK_DIV_364 0xF

#define MPU6050_I2C_SLV_RW_BIT 7

#define MPU6050_I2C_SLV_ADDR_BIT 6

#define MPU6050_I2C_SLV_ADDR_LENGTH 7

#define MPU6050_I2C_SLV_EN_BIT 7

#define MPU6050_I2C_SLV_BYTE_SW_BIT 6

#define MPU6050_I2C_SLV_REG_DIS_BIT 5

#define MPU6050_I2C_SLV_GRP_BIT 4

#define MPU6050_I2C_SLV_LEN_BIT 3

#define MPU6050_I2C_SLV_LEN_LENGTH 4

#define MPU6050_I2C_SLV4_RW_BIT 7

#define MPU6050_I2C_SLV4_ADDR_BIT 6

#define MPU6050_I2C_SLV4_ADDR_LENGTH 7

#define MPU6050_I2C_SLV4_EN_BIT 7

#define MPU6050_I2C_SLV4_INT_EN_BIT 6

#define MPU6050_I2C_SLV4_REG_DIS_BIT 5

#define MPU6050_I2C_SLV4_MST_DLY_BIT 4

#define MPU6050_I2C_SLV4_MST_DLY_LENGTH 5

#define MPU6050_MST_PASS_THROUGH_BIT 7

#define MPU6050_MST_I2C_SLV4_DONE_BIT 6

#define MPU6050_MST_I2C_LOST_ARB_BIT 5

#define MPU6050_MST_I2C_SLV4_NACK_BIT 4

#define MPU6050_MST_I2C_SLV3_NACK_BIT 3

#define MPU6050_MST_I2C_SLV2_NACK_BIT 2

#define MPU6050_MST_I2C_SLV1_NACK_BIT 1

#define MPU6050_MST_I2C_SLV0_NACK_BIT 0

#define MPU6050_INTCFG_INT_LEVEL_BIT 7

#define MPU6050_INTCFG_INT_OPEN_BIT 6

#define MPU6050_INTCFG_LATCH_INT_EN_BIT 5

#define MPU6050_INTCFG_INT_RD_CLEAR_BIT 4

#define MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT 3

#define MPU6050_INTCFG_FSYNC_INT_EN_BIT 2

#define MPU6050_INTCFG_I2C_BYPASS_EN_BIT 1

#define MPU6050_INTCFG_CLKOUT_EN_BIT 0

#define MPU6050_INTMODE_ACTIVEHIGH 0x00

#define MPU6050_INTMODE_ACTIVELOW 0x01

#define MPU6050_INTDRV_PUSHPULL 0x00

#define MPU6050_INTDRV_OPENDRAIN 0x01

#define MPU6050_INTLATCH_50USPULSE 0x00

#define MPU6050_INTLATCH_WAITCLEAR 0x01

#define MPU6050_INTCLEAR_STATUSREAD 0x00

#define MPU6050_INTCLEAR_ANYREAD 0x01

#define MPU6050_INTERRUPT_FF_BIT 7

#define MPU6050_INTERRUPT_MOT_BIT 6

#define MPU6050_INTERRUPT_ZMOT_BIT 5

#define MPU6050_INTERRUPT_FIFO_OFLOW_BIT 4

#define MPU6050_INTERRUPT_I2C_MST_INT_BIT 3

#define MPU6050_INTERRUPT_PLL_RDY_INT_BIT 2

#define MPU6050_INTERRUPT_DMP_INT_BIT 1

#define MPU6050_INTERRUPT_DATA_RDY_BIT 0

// TODO: figure out what these actually do

// UMPL source code is not very obivous

#define MPU6050_DMPINT_5_BIT 5

#define MPU6050_DMPINT_4_BIT 4

#define MPU6050_DMPINT_3_BIT 3

#define MPU6050_DMPINT_2_BIT 2

#define MPU6050_DMPINT_1_BIT 1

#define MPU6050_DMPINT_0_BIT 0

#define MPU6050_MOTION_MOT_XNEG_BIT 7

#define MPU6050_MOTION_MOT_XPOS_BIT 6

#define MPU6050_MOTION_MOT_YNEG_BIT 5

#define MPU6050_MOTION_MOT_YPOS_BIT 4

#define MPU6050_MOTION_MOT_ZNEG_BIT 3

#define MPU6050_MOTION_MOT_ZPOS_BIT 2

#define MPU6050_MOTION_MOT_ZRMOT_BIT 0

#define MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT 7

#define MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT 4

#define MPU6050_DELAYCTRL_I2C_SLV3_DLY_EN_BIT 3

#define MPU6050_DELAYCTRL_I2C_SLV2_DLY_EN_BIT 2

#define MPU6050_DELAYCTRL_I2C_SLV1_DLY_EN_BIT 1

#define MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT 0

#define MPU6050_PATHRESET_GYRO_RESET_BIT 2

#define MPU6050_PATHRESET_ACCEL_RESET_BIT 1

#define MPU6050_PATHRESET_TEMP_RESET_BIT 0

#define MPU6050_DETECT_ACCEL_ON_DELAY_BIT 5

#define MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH 2

#define MPU6050_DETECT_FF_COUNT_BIT 3

#define MPU6050_DETECT_FF_COUNT_LENGTH 2

#define MPU6050_DETECT_MOT_COUNT_BIT 1

#define MPU6050_DETECT_MOT_COUNT_LENGTH 2

#define MPU6050_DETECT_DECREMENT_RESET 0x0

#define MPU6050_DETECT_DECREMENT_1 0x1

#define MPU6050_DETECT_DECREMENT_2 0x2

#define MPU6050_DETECT_DECREMENT_4 0x3

#define MPU6050_USERCTRL_DMP_EN_BIT 7

#define MPU6050_USERCTRL_FIFO_EN_BIT 6

#define MPU6050_USERCTRL_I2C_MST_EN_BIT 5

#define MPU6050_USERCTRL_I2C_IF_DIS_BIT 4

#define MPU6050_USERCTRL_DMP_RESET_BIT 3

#define MPU6050_USERCTRL_FIFO_RESET_BIT 2

#define MPU6050_USERCTRL_I2C_MST_RESET_BIT 1

#define MPU6050_USERCTRL_SIG_COND_RESET_BIT 0

#define MPU6050_PWR1_DEVICE_RESET_BIT 7

#define MPU6050_PWR1_SLEEP_BIT 6

#define MPU6050_PWR1_CYCLE_BIT 5

#define MPU6050_PWR1_TEMP_DIS_BIT 3

#define MPU6050_PWR1_CLKSEL_BIT 2

#define MPU6050_PWR1_CLKSEL_LENGTH 3

#define MPU6050_CLOCK_INTERNAL 0x00

#define MPU6050_CLOCK_PLL_XGYRO 0x01

#define MPU6050_CLOCK_PLL_YGYRO 0x02

#define MPU6050_CLOCK_PLL_ZGYRO 0x03

#define MPU6050_CLOCK_PLL_EXT32K 0x04

#define MPU6050_CLOCK_PLL_EXT19M 0x05

#define MPU6050_CLOCK_KEEP_RESET 0x07

#define MPU6050_PWR2_LP_WAKE_CTRL_BIT 7

#define MPU6050_PWR2_LP_WAKE_CTRL_LENGTH 2

#define MPU6050_PWR2_STBY_XA_BIT 5

#define MPU6050_PWR2_STBY_YA_BIT 4

#define MPU6050_PWR2_STBY_ZA_BIT 3

#define MPU6050_PWR2_STBY_XG_BIT 2

#define MPU6050_PWR2_STBY_YG_BIT 1

#define MPU6050_PWR2_STBY_ZG_BIT 0

#define MPU6050_WAKE_FREQ_1P25 0x0

#define MPU6050_WAKE_FREQ_2P5 0x1

#define MPU6050_WAKE_FREQ_5 0x2

#define MPU6050_WAKE_FREQ_10 0x3

#define MPU6050_BANKSEL_PRFTCH_EN_BIT 6

#define MPU6050_BANKSEL_CFG_USER_BANK_BIT 5

#define MPU6050_BANKSEL_MEM_SEL_BIT 4

#define MPU6050_BANKSEL_MEM_SEL_LENGTH 5

#define MPU6050_WHO_AM_I_BIT 6

#define MPU6050_WHO_AM_I_LENGTH 6

#define MPU6050_DMP_MEMORY_BANKS 8

#define MPU6050_DMP_MEMORY_BANK_SIZE 256

#define MPU6050_DMP_MEMORY_CHUNK_SIZE 16

uint8_t i2c_buffer[256];

//#define MPU_6050_ADDRESS 0x68 // MPU-6050 i2c address = b1101000x

#define MPU_6050_ADDRESS 0x68 // MPU-6050 i2c address = b110 1000

typedef union {

struct{

uint8_t x_accel_h;

uint8_t x_accel_l;

uint8_t y_accel_h;

uint8_t y_accel_l;

uint8_t z_accel_h;

uint8_t z_accel_l;

uint8_t t_h;

uint8_t t_l;

uint8_t x_gyro_h;

uint8_t x_gyro_l;

uint8_t y_gyro_h;

uint8_t y_gyro_l;

uint8_t z_gyro_h;

uint8_t z_gyro_l;

}

reg;

struct{

int16_t x_accel;

int16_t y_accel;

int16_t z_accel;

int16_t temperature;

int16_t x_gyro;

int16_t y_gyro;

int16_t z_gyro;

}

value;

}accel_t_gyro_union;

float dT;

accel_t_gyro_union accel_t_gyro;

uint8_t swap;

#define SWAP(x,y) swap = x; x = y; y = swap

const static double PI = 4*atan(1.0);

float acc_x;

float acc_y;

float acc_z;

float acc_angle_x;

float acc_angle_y;

float acc_angle_z;

float gyro_x;

float gyro_y;

float gyro_z;

uint8_t led_seq=0;

uint16_t led_color = LED_GREEN;

uint16_t led_x=0, led_y=0;

int main(void)

{

CyGlobalIntEnable; /* Enable global interrupts. */

/* Place your initialization/startup code here (e.g. MyInst_Start()) */

PWM_1_Start();

I2CDev_initialize();

I2CDev_readByte(MPU_6050_ADDRESS, MPU6050_RA_WHO_AM_I, i2c_buffer); // read who am I

if (i2c_buffer[0] != 0x68)

{

PWM_1_Stop();

}

I2CDev_readByte(MPU_6050_ADDRESS, MPU6050_RA_PWR_MGMT_1, i2c_buffer); // check power management status

I2CDev_writeByte(MPU_6050_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0); //

LED8x8bi_begin(ADAFRUIT_LEDBACKPACK_DEFAULT_ADDR);

LED8x8bi_clear();

LED8x8bi_writeDisplay();

for(;;)

{

/* Place your application code here. */

I2CDev_readBytes(MPU_6050_ADDRESS, MPU6050_RA_ACCEL_XOUT_H, (uint8_t *) &accel_t_gyro, sizeof(accel_t_gyro));

SWAP (accel_t_gyro.reg.x_accel_h, accel_t_gyro.reg.x_accel_l);

SWAP (accel_t_gyro.reg.y_accel_h, accel_t_gyro.reg.y_accel_l);

SWAP (accel_t_gyro.reg.z_accel_h, accel_t_gyro.reg.z_accel_l);

SWAP (accel_t_gyro.reg.t_h, accel_t_gyro.reg.t_l);

SWAP (accel_t_gyro.reg.x_gyro_h, accel_t_gyro.reg.x_gyro_l);

SWAP (accel_t_gyro.reg.y_gyro_h, accel_t_gyro.reg.y_gyro_l);

SWAP (accel_t_gyro.reg.z_gyro_h, accel_t_gyro.reg.z_gyro_l);

dT = ( (float) accel_t_gyro.value.temperature + 12412.0) / 340.0;

acc_x = accel_t_gyro.value.x_accel / 16384.0; //FS_SEL_0 16,384 LSB / g

acc_y = accel_t_gyro.value.y_accel / 16384.0;

acc_z = accel_t_gyro.value.z_accel / 16384.0;

acc_angle_x = atan2(acc_x, acc_z) * 360 / 2.0 / PI;

acc_angle_y = atan2(acc_y, acc_z) * 360 / 2.0 / PI;

acc_angle_z = atan2(acc_x, acc_y) * 360 / 2.0 / PI;

gyro_x = accel_t_gyro.value.x_gyro / 131.0; //FS_SEL_0 131 LSB / (°/s)

gyro_y = accel_t_gyro.value.y_gyro / 131.0;

gyro_z = accel_t_gyro.value.z_gyro / 131.0;

LED8x8bi_clear();

led_y = 0;

if (acc_angle_y < -75.0) {

led_x = 6;

} else if (acc_angle_y < -45.0) {

led_x = 5;

} else if (acc_angle_y < -22.5) {

led_x = 4;

} else if (acc_angle_y < 0) {

led_x = 3;

} else if (acc_angle_y < 22.5) {

led_x = 2;

} else if (acc_angle_y < 45.0) {

led_x = 1;

} else {

led_x = 0;

}

if (acc_angle_x < -75.0) {

led_y = 6;

} else if (acc_angle_x < -45.0) {

led_y = 5;

} else if (acc_angle_x < -22.5) {

led_y = 4;

} else if (acc_angle_x < 0) {

led_y = 3;

} else if (acc_angle_x < 22.5) {

led_y = 2;

} else if (acc_angle_x < 45.0) {

led_y = 1;

} else {

led_y = 0;

}

if (acc_angle_z < -45){

led_color = LED_YELLOW;

} else if (acc_angle_z < 0) {

led_color = LED_GREEN;

} else {

led_color=LED_RED;

}

LED8x8bi_drawPixel(led_x, led_y, led_color);

LED8x8bi_drawPixel(led_x, led_y+1, led_color);

LED8x8bi_drawPixel(led_x+1, led_y, led_color);

LED8x8bi_drawPixel(led_x+1, led_y+1, led_color);

LED8x8bi_writeDisplay();

}

}