Aterrizaje I

Es frecuente entre los aspirantes a piloto creer que el aterrizaje de un aeroplano constituye la culminación del entrenamiento y que una vez aprendido, todo lo demás es complementario. Es verdad que el aterrizaje supone procedimientos y percepciones que son un poco distintos a los que implican otras fases del vuelo, pero la creencia anterior, de la que nadie está libre, si persiste, produce dos resultados desafortunados: el primero es que la tensión que supone la excesiva importancia dada a esta maniobra puede perjudicar el progreso de aprendizaje (incluido el propio aterrizaje), y segundo, que una vez se sabe aterrizar se descuida la obtención de una eciencia adecuada para las demás fases de vuelo.

Aterrizar un aeroplano, consiste en permitir que este contacte con el terreno a la velocidad vertical más baja posible, y en circunstancias normales también a la velocidad horizontal (respecto al suelo) más baja posible, consistentes ambas con un control adecuado, sin que la distancia recorrida en la maniobra exceda la longitud de terreno disponible. En denitiva, se trata de poner al aeroplano en pérdida a muy pocos centímetros del suelo manteniendo el control direccional y sin salirse de la pista.

Por muchos aterrizajes que realice, puede que muchas veces las condiciones ambientales sean buenas, pero raramente serán ideales. Así que, aunque por razones didácticas se haga la clasicación siguiente, es muy posible que en más de un aterrizaje tenga que aplicar alguna combinación de procedimientos. Por ejemplo: el viento no sopla exactamente en cara casi nunca, pero si está solo ligeramente cruzado y tiene poca intensidad la técnica de aterrizaje "normal" es sufyciente; ahora bien, si sopla muy cruzado y con cierta intensidad, tendrá que echar mano de los procedimientos de aterrizaje con viento cruzado; si además la pista es corta y blanda y existen obstáculos en la senda de planeo es obvio que necesita combinar acertadamente varios procedimientos. En teoría pues, los aterrizajes pueden ser clasicados en:

  • Aterrizaje normal.

  • Aterrizaje con viento cruzado.

  • Aterrizaje en campo corto.

  • Aterrizaje en campo blando.

En estos primeros capítulos se desarrolla la realización de esta maniobra en circunstancias normales (aterrizaje normal), las técnicas que puede aplicar el piloto para mantener el control del aeroplano de forma positiva, y los factores que afectan al aeroplano en esta fase. Los fundamentos básicos detallados servirán para, con ligeras variaciones, abordar posteriormente los aterrizajes "no normales". Considero un aterrizaje "normal" aquel en que se dispone de potencia suciente en el motor, el viento no es fuerte ni racheado y en la aproximación nal sopla de frente o casi de frente, no hay obstáculos en la senda de descenso y la pista es sucientemente larga y bien pavimentada.

Antes de proseguir, la recomendación habitual: utilice el sentido común. No debe ponerse nunca (salvo que alguna circunstancia extraordinaria le obligue) en una situación tal que tenga que aterrizar en esa pista y precisamente ahora. Si está aproximándose a una pista corta y blanda, hay fuertes ráfagas de viento cruzado y el sol le ciega o hay poca visibilidad, puede ser mas seguro, si es posible, demorar el aterrizaje hasta que las condiciones mejoren o intentarlo en un aeródromo alternativo.

6.2.1 Listas de chequeo.

Muchos pilotos siguen escrupulosamente la lista de chequeo durante el prevuelo, pero confían en su memoria durante la aproximación y aterrizaje. Esto no es muy bueno, pero es fácil de comprender: durante el prevuelo no se está atado al asiento por el cinturón de seguridad ni ocupado volando el avión; en esas condiciones tomarse unos minutos para encontrar la lista y leerla no tiene mayor importancia. Pero con el avión en la senda de descenso, no es momento ni lugar para ponerse a buscarla y leerla, así que se sugiere algunas de estas cosas:

1. Si utiliza habitualmente un "piernografo", pegue una copia de la checklist en el mismo.

2. Pegue una copia de la checklist en algún espacio fácilmente visible en el panel de instrumentos.

3. Asegúrese que la checklist corresponde al modelo de avión que está volando. Unos aviones tienen tren de aterrizaje retráctil y otros no; en algunos conviene poner calefacción al carburador casi siempre y en otros solo en circunstancias más críticas; la hélice propulsora puede ser de paso jo o de paso variable; la velocidad de mejor descenso diere de un avión a otro; etc.

4. Si prefiere memorizar la lista, viento en cola preparándose para el aterrizaje no es el mejor momento. Unas millas antes de entrar en el circuito de tráco del aeródromo, lea la checklist, piense sobre ella y grábesela en la memoria, o recítela en voz alta si lo prefiere.

5. La checklist debería cubrir tres puntos: aproximación, aterrizaje y motor y al aire. Piense que en el momento que decide frustrar el aterrizaje se encuentra cercano a la pista y con poca velocidad, o sea bajo y lento. Las operaciones necesarias debe tenerlas memorizadas para realizarlas de forma rápida y precisa, no puede entretenerse con listas de chequeo.

Algunos manuales de operación incluyen en la lista de chequeo un único apartado de Aproximación y Aterrizaje (Approach and Landing); otros dividen las tareas en dos: Aproximación (Approach) y Preaterrizaje (Before Landing). Esta última forma me parece más lógica pues se ajusta mejor a la discontinuidad en el tiempo entre las distintas tareas. La Fig.6.2.1 muestra un par de ejemplos de los procedimientos de Aproximación y Preaterrizaje; la lista de la izquierda corresponde a un aeroplano con tren jo y hélice de paso jo, la de la derecha a otro con tren jo y hélice de paso variable.

De los ejemplos de la Fig. 6.2.1, puede deducirse que los puntos incluidos en el apartado Aproximación se efectúan antes de entrar en circuito, es decir para "aproximarse" al aeródromo: sintonizar frecuencia, solicitar autorización para entrar en la zona de control del aeródromo, ajustar el altímetro al QNH recibido, etc. Conviene destacar en la lista de la izquierda, que la luz de aterrizaje "A/R" advierte que, si por ejemplo el aeródromo tiene mucho tráco o volamos en una hora cercana al ocaso, es prudente llevar la luz de aterrizaje encendida al aproximarse. Las probabilidades de una colisión en vuelo no son muy altas, pero la mayoría de ellas se concentran en las proximidades de los aeropuertos; por esta razón, cuando se procede a un aeródromo saturado, o la torre nos comunica que hay otros aviones en aproximación o realizando circuitos, es prudente encender la luz de aterrizaje para facilitar que otros tráficos nos vean.

¿En que momento conviene realizar los procedimientos de la checklist?. Si como veremos después, en aproximación nal el piloto ha de ocuparse (y según las condiciones puede que bastante) en mantener la velocidad, la senda de descenso y la alineación con la pista, corregir el efecto del viento lateral, si no ha recibido todavía permiso de aterrizaje por parte de la torre estar atento a su recepción, etc., parece sensato tener el avión previamente congurado para esta maniobra. No espere al último momento para hacerlo deprisa y corriendo ni se deje para el nal operaciones que puede ejecutar antes.

Conviene recordar que las checklist indican las operaciones y el orden conveniente de las mismas de forma más a menos precisa, pero son deliberadamente ambiguas respecto al momento exacto que deben ejecutarse. Por ejemplo: "Antes de aterrizar" no dice si las operaciones han de hacerse x minutos, x millas de distancia o x píes de altura, antes del aterrizaje; solo indica que deben hacerse antes de aterrizar. Tampoco sugiere que todas las operaciones se efectúen inmediatamente una detrás de otra, dependerá de su conveniencia; por ejemplo: puede interesarle encender la bomba de combustible y la luz de aterrizaje mientras está viento en cola y posponer el encendido de la calefacción al carburador hasta la aproximación final. En cualquier caso, es buena norma que los procedimientos previos al aterrizaje (Before Landing) estén completados antes de comenzar el descenso para aterrizar.

Como lo habitual es incorporarse al circuito aproximadamente por la mitad del tramo viento en cola, el paso del aeroplano perpendicular al comienzo de la pista (Fig.6.2.2) constituye una buena referencia para comenzar a congurar el avión (bomba de combustible, mezcla rica, luz de aterrizaje, paso de la hélice y presión de manifold...). Si la incorporación al circuito se produce por el tramo de base o se entra directamente al tramo nal, prevea realizar los procedimientos de la checklist con antelación suficiente.

Puesto que lo más posible es que tenga que ejecutar los procedimientos habiéndolos memorizado previamente, es una buena costumbre seguir unas pautas concretas, las que preera y le sean más útiles, pero siempre las mismas. Si está realizando tomas y despegues, el tiempo para comprobaciones de checklist se reduce prácticamente a nada, así que lo mejor es que tenga perfectamente memorizados y muy claros los procedimientos a seguir y en que momento efectuarlos.

6.2.2 Preparación del aterrizaje.

Con fines exclusivamente didácticos, la maniobra de aterrizaje se suele dividir en fases arbitrarias, de las cuales la Fig.6.2.3 ofrece una muestra como ejemplo. La mayoría de los manuales y libros que conozco limitan los detalles de la maniobra a las fases fundamentales, esto es: (1) tramo base, (2) aproximación final, (3) recogida, (4) aterrizaje o "toma" y (5) después de aterrizar; muy pocos son los que detallan, o si lo hacen es de forma somera, los pasos previos a realizar antes de tener el avión en aproximación nal. La denominación en inglés de las fases mostradas en la figura es: base leg, final approach, are, touchdown y after landing roll.

Como lo habitual es que aprenda a aterrizar practicando tomas y despegues, para lo cual debe trazar el circuito una y otra vez, considero de interés incluir este apartado (que denomino preparación del aterrizaje porque no se me ocurría otro mejor) con una serie de recomendaciones y procedimientos a realizar en los tramos de circuito anteriores a la aproximación final.

Como se repetirá a menudo en estos capítulos, "un buen aterrizaje requiere una buena aproximación", e inversamente, una aproximación defectuosa supondrá seguramente un pobre aterrizaje. Y una buena aproximación comienza por realizar correctamente el circuito de tráfico.

Viento en cola.Desde el paso del avión perpendicular al comienzo de la pista hasta virar a base:

  • Comience a congufirar el avión para aterrizar (bomba combustible, luz aterrizaje, mezcla, etc.)

  • Ajuste su potencia a los valores predeterminados que mejor rendimiento proporcionan para aterrizar. En aviones con hélice de paso variable esto supone ajustar la presión de manifold y las rpm a unos valores concretos.

  • Sin perder altura, comience a reducir velocidad acercándose paulatinamente (unos nudos por encima) a la recomendada por el fabricante para la aproximación final. Además de prepararse para la fase siguiente, al volar más lento esto le dejará un poco más de tiempo para realizar todas las operaciones restantes de forma pausada y con seguridad.

  • Si va a aterrizar con flap (full o parcial) este es un buen momento para extender el primer punto. Si lo hace compense el avión.

  • Al llegar al punto que considere apropiado, en función de la velocidad que lleve y dependiendo de si le precede o no algún avión, realice un viraje suave hacia el tramo base. Una regla bastante utilizada es comenzar el viraje a unos 45&º del umbral de la pista, que es mas o menos cuando esta queda por detrás unos dos planos de ala aproximadamente (Fig.6.2.4).

  • Si tiene aviones por delante, antes de virar a base espere a que el predecesor inmediato pase en dirección a la pista frente al borde de su ala. Ajuste su velocidad y distancia al precedente durante el resto de la maniobra para que aquel pueda aterrizar y dejar la pista libre antes de que Vd. se encuentre en corta final. Si se echa encima, la torre no le autorizará el aterrizaje y tendrá que realizar motor y al aire. Recuerde: no debe aterrizar mientras haya algún avión en la pista.

Tramo base. En este tramo el piloto tiene que tomar dos decisiones que pueden afectar a la calidad del aterrizaje: una consiste en juzgar a que altitud y distancia debe comenzar el descenso para aterrizar en el lugar deseado; la otra es decidir en que punto virar a aproximación nal para poner al avión en la senda de descenso adecuada a las circunstancias y alineado con el eje de la pista. Lo habitual es que primero reduzca potencia, deje que la velocidad se acerque a la de descenso y después comience este. Muchos manuales sugieren que sobre la mitad del tramo base, corte gases y comience el descenso pues así se familiariza con la capacidad de planeo del aeroplano, experiencia valiosa si tuviera que realizar un aterrizaje de emergencia; ahora bien, esto obliga al piloto a "anar", pues acorta la duración de la siguiente fase (aproximación final) y con ello el tiempo disponible para corregir posibles desviaciones. En general:

  • Comience el tramo manteniendo la altura y vuele perpendicular a la pista. Como aterrizará contra el viento (no debe aterrizar con viento de cola salvo situación excepcional), en este tramo le estará soplando de costado alejándolo de la pista, así que deberá corregir la deriva.

  • Si todavía no ha terminado de completar la preparación del aeroplano para el aterrizaje no lo deje para mas tarde, hágalo ahora.

  • Si piensa aterrizar con full flap y este tiene más de dos ángulos de calaje (puntos de flap) extienda el segundo punto de flap (el último se deja para la aproximación final) y compense el avión. La regla habitual para aterrizar con full ap es ir desplegándolo en los tramos anteriores a la aproximación final, y en ese tramo bajar el último punto.

  • Si su aeroplano tiene tren retráctil y no lo ha bajado antes, bájelo y compruebe que está "abajo y bloqueado".

  • Juzgue cuando comenzar el descenso por el ángulo con el cual observa la pista.

  • Llegado a este punto, reduzca potencia y ajuste el cabeceo para lograr la velocidad de descenso recomendada; a continuación comience el descenso manteniendo esa velocidad.

  • Exactamente en que punto comienza a descender y en cual vira a aproximación final (pueden coincidir ambos) depende principalmente de la altura del circuito, de la fuerza del viento, de la cantidad de ap extendido y naturalmente, de la presencia o ausencia de obstáculos.

Una regla muy genérica que puede servir de ayuda para estimar donde comenzar el descenso es: Con una altura de unos 1000 ft sobre el terreno (1000 ft AGL), aproximadamente a la mitad del tramo base adopte la velocidad de descenso y una vez establecida comience este (a unos 500 f.p.m.); si la altura es menor debe comenzar más tarde y si la altura es mayor comience antes (Fig.6.2.5).

Con viento de cierta intensidad en aproximación final o si se extienden flaps para mantener un ángulo de descenso pronunciado, el tramo base debería volarse perpendicularmente algo mas cercano a la pista que si el viento es suave o va a aterrizar con el avión limpio, o sea sin flaps extendidos (Fig.6.2.6).

A medida que su entrenamiento progrese, se irá acostumbrando a visualizar la trayectoria de toda la aproximación mientras se encuentra en la última parte del tramo viento en cola; esto le ayudará a estimar la trayectoria del tramo base, donde reducir velocidad, cuando comenzar el descenso y cuando virar a aproximación nal. Este último viraje debe dejar al aeroplano alineado con el eje de la pista, lo cual requiere del piloto estimar cuidadosamente el punto de comienzo y el radio de giro. Respecto a los virajes conviene tener en cuenta un par de cosas:

Normalmente no deben exceder de 30º (viraje medio) porque el aeroplano vuela a baja velocidad y cuanto mayor sea el ángulo de alabeo mayor es la velocidad en la cual el avión entra en pérdida; dado que la maniobra se hace a relativamente baja altitud, entrar en pérdida supone un desastre casi seguro. Si se encuentra con que tiene que realizar un viraje pronunciado (más de 30º) porque lo ha iniciado tarde y se aleja de la trayectoria que le pondrá centrado en la pista, puede ser preferible discontinuar la aproximación, hacer un motor y al aire y en el próximo intento planificar el comienzo del viraje un poco antes. Lo contrario es ponerse en una situación de riesgo innecesario.

Deben realizarse a una altitud segura, que dependerá de la elevación el terreno y la altura de los posibles obstáculos a lo largo de la trayectoria, y a una distancia de la pista tal que no impida llegar a ella en caso de fallo de motor, pero que posibilite una aproximación nal lo sucientemente larga para que el piloto pueda: (1) estimar con precisión el punto de contacto con la superficie mientras mantiene el ángulo de descenso y velocidad apropiados, y (2) corregir cualquier desviación en los parámetros anteriores durante este último tramo.

6.2.3 Aproximación final.

Es la parte del circuito de tráco en el cual el aeroplano desciende, alineado con el eje de la pista, en línea recta hacia el punto de referencia estimado para aterrizar. Como la aproximación nal no deja de ser un descenso, de cierta precisión pero descenso al n y al cabo, conviene revisar los detalles de esta maniobra.

El objetivo consiste en mantener el avión con una velocidad y ángulo de descenso tales que:

1. la siguiente fase -recogida- no sea crítica sino de fácil realización,

2. el aeroplano alcance el punto de contacto con la superficie en el primer tercio de la pista,

3. la velocidad mantenida no suponga riesgo de pérdida, y

4. que esa velocidad proporcione tras la recogida un mínimo de sustentación y velocidad respecto al suelo justo antes de contactar.

Esas son las claves esenciales a controlar en esta fase: velocidad y ángulo de descenso. Velocidad, porque no quiere apostar por una pérdida a baja altura pero tampoco presentarse en la recogida como un relámpago, "comiéndose" tanta pista que se le indigeste; ángulo de descenso porque quiere aterrizar próximo al punto de referencia, ni mucho antes ni mucho después, y ambas porque desea una recogida suave y fácil en vez de laboriosa y crítica.

No vaya a creer que las cuatro fuerzas fundamentales (sustentación, peso, resistencia y potencia) han desaparecido, ahí están omnipresentes. Lo que ocurre es que veremos como controlando las dos variables mencionadas, para lo cual es posible que tengamos que variar alguna de las fuerzas (salvo el peso que es invariable), el piloto controla la aproximación.

La geometría de una aproximación final se muestra en la figura 6.2.7: el aeroplano se encuentra a una altura (a) y distancia (d) del punto de la pista elegido como referencia para aterrizar, debiendo por tanto recorrer d millas mientras desciende a pies de forma simultánea, o si se preere de otra forma, descender a pies mientras recorre d millas.

Obviamente, la distancia horizontal d recorrida es función de la velocidad del avión respecto al suelo, es decir, de la velocidad aerodinámica mas/menos la velocidad del viento, mientras que la distancia vertical a depende de la tasa de descenso. La relación entre a y d es lo que conocemos como ratio de descenso, el cual se expresa angularmente en la gura como ángulo de descenso α. Así pues, la labor del piloto consiste en ajustar los parámetros de vuelo de forma que, con las premisas mencionadas anteriormente (velocidad y ángulo de descenso dentro de unos límites), el aeroplano recorra ambas distancias de forma simultánea.

En el apartado de descargas tiene unas tablas que relacionan velocidad horizontal, velocidad vertical y ángulo de descenso.

Aun a riesgo de ser redundante, recordemos como se relacionan velocidad y tasa de descenso mediante la curva de potencia (Fig.6.2.8):

1. Para una misma potencia (P1), la tasa de descenso (T1, T2) varía con la velocidad (V1 y V2 respectivamente).

2. Con una misma velocidad (V1), la tasa de descenso (T1, T3) varía con la potencia (P1, P2), a mayor potencia menor tasa de descenso.

3. Para una potencia concreta (P1 o P2), el mejor ratio de descenso (mayor distancia recorrida por unidad de altura perdida) lo proporciona una velocidad determinada (V1), por encima o debajo de esta el ratio de descenso se empobrece.

Como el ángulo de descenso αdepende de la altura a y la distancia horizontal recorrida d, si el piloto varía la velocidad sin reajustar la potencia, o la potencia sin reajustar la velocidad, está variando también el ángulo de descenso.

A efectos prácticos, no piense que tiene que realizar complejos cálculos sobre velocidades, tasas de descenso, potencia necesaria, velocidad del viento, densidad de la atmósfera, peso del avión, etc. De forma muy simplicada: en función de las circunstancias (pista, obstáculos, viento, ...) el piloto estima la conguración adecuada (aps, no flaps) y la senda a seguir; adopta la mejor velocidad de descenso para esa configuración y manteniendo la misma sigue la senda que, salvando los obstáculos, le deje en el punto de referencia en las mejores condiciones para la recogida y posterior carrera de frenado. Si ana en esta estimación tendrá que realizar muy pocas correcciones; por el contrario, una estimación incorrecta le obligará a efectuar correcciones más severas o en último extremo frustrar el aterrizaje.

6.2.4 Velocidad de aproximación.

De acuerdo con los objetivos perseguidos, podemos deducir claramente que la velocidad de aproximación debe ser más alta que la de pérdida pero no mucho más. Está claro, no queremos exponernos a una pérdida pero tampoco a que nos falte pista o que la recogida requiera una técnica de pilotaje extraordinaria. Pero si además, esa velocidad proporciona un buen ratio de descenso pues mucho mejor, el aeroplano recorrerá la mayor distancia posible descendiendo más lentamente y el ángulo de descenso estará dentro de unos márgenes razonables. ¿Y cual es esa velocidad?. Pues la respuesta la debería encontrar tabulada en el manual de operación del aeroplano. Los números que primero se aprenden (por la cuenta que le tiene) durante el entrenamiento, corresponden a velocidades de rotación y despegue y de aproximación para aterrizar.

Los instructores le "machacarán" durante su entrenamiento con que mantenga la velocidad: "velocidad y pista, velocidad y pista..." y de hecho muchos consideran este factor el más importante para aterrizar con precisión. ¿Porqué esa insistencia?. Pues por la sencilla razón que los cambios en la velocidad afectan a la sustentación, a la velocidad respecto al suelo, a la velocidad vertical, al ángulo de descenso, etc. Estos cambios ocurren usualmente porque el piloto no mantiene constante la actitud de morro (realmente el ángulo de ataque) para una potencia determinada, dandose que la mayoría de las aproximaciones echadas a perder se deben más a un pobre control de la velocidad que a otra cosa.

Los fabricantes incluyen en los libros de operación, con mayor o menor grado de detalle, las velocidades de aproximación recomendadas para distintas configuraciones de flap, velocidades que suelen proporcionar los mejores ratios de descenso, pero mi experiencia me dice que no espere encontrar suciente información al respecto, suele ser pobrísima al menos en los manuales que conozco. Generalmente, estas velocidades corresponden a algún porcentaje jo de la velocidad de pérdida o velocidad minima de control para el aeroplano en configuración de aterrizaje (Vso), o sea que corresponden a unos coeficientes de sustentación particulares o lo que es lo mismo a unos determinados ángulos de ataque.

En muchos manuales y libros de pilotaje se dice que en ausencia de especificación del fabricante:

  • Viento en cola no vuele más rápido que la velocidad marcada por el límite superior del arco blanco ni más lento que 1.4 Vso.

  • Mantenga esa velocidad hasta virar a final.

  • Deje que en aproximación final la velocidad decaiga hasta 1.3 Vso, es decir un tercio por encima de la velocidad de pérdida del aeroplano en configuración de aterrizaje. Si por ejemplo su Vso es de 60 nudos la velocidad de aproximación debería ser aproximadamente 78 nudos (60*1.3=78).

  • Si encuentra turbulencias, viento racheado o con ráfagas compense este hecho con velocidad adicional.

Durante la aproximación final procure mantener la velocidad recomendada porque:

  • mantiene un margen seguro sobre la velocidad de pérdida;

  • la baja tasa de descenso asegura una transición suave en la recogida facilitando la maniobra; la deceleración producida al recoger le dejará sobre la pista con una velocidad suficientemente baja como para mantener la sustentación mínima necesaria para culminar la maniobra (toma);

  • este mínimo de sustentación permite posarse suavemente al avión (se supone que está a muy pocos centímetros de la superficie) sin fatigar el tren de aterrizaje;

  • la carrera posterior a la toma consume el mínimo necesario de pista y permitirle decelerar el avión rápidamente sin castigar excesivamente los frenos.

Y aunque hablamos de velocidades, es muy importante recordar que:

  • El mejor ratio de descenso o de planeo ocurre con un ángulo de ataque determinado, por lo que:

  • la recomendación sobre velocidad de aproximación final es realmente una recomendación sobre el ángulo de ataque.

Controlar el ángulo de ataque es importante en todas las fases de vuelo, pero muy especialmente en la aproximación final, con el avión volando lento y bajo intencionadamente. Una forma de mantener un ángulo de ataque determinado es mediante la percepción y el control de la actitud y el ángulo de descenso. Con o sin aps extendidos, el ángulo de ataque depende de la diferencia angular entre la actitud y la dirección de vuelo; por tanto, manteniendo un valor definido para estos ángulos se mantiene también el valor del ángulo de ataque. Recuerde que compensar el avión para el ángulo de ataque deseado y volar moviendo ligeramente los controles ayuda de forma extraordinaria a mantener el ángulo de ataque; utilice el compensador.

Recuerde también que la mejor información sobre el ángulo de ataque la proporciona el indicador de velocidad, pero eso no debe signicar que este demande toda su atención; el 10% de su atención es suficiente, el otro 90% mire fuera y utilice sus percepciones. Como ya se dijo, aprenda a percibir el ángulo de ataque. ¿Se ha planteado que puede averiarse el indicador de velocidad?, pues puedo asegurar que sucede porque lo he experimentado. Una buena instrucción debería incluir aterrizar sin este instrumento (el instructor lo tapa). Controlar el ángulo de ataque es importantísimo; si el avión esta algo desalineado con la pista o ligeramente alto o lejos, esto no es trágico y veremos que tiene fácil solución (en último caso "motor y al aire"), pero si pierde el control del ángulo de ataque, ese descuido puede terminar con el vuelo de forma dramática y repentina (pérdida a baja altura). Insisto: controle el ángulo de ataque.

6.2.5 ángulo de descenso (senda).

El ángulo de descenso está afectado por las cuatro fuerzas fundamentales, de forma que si estas son constantes el ángulo de descenso también es constante en condiciones de viento nulo. Por lo tanto, para mantener un determinado ángulo de descenso, si altera alguna fuerza ello exige un cambio coordinado en las restantes. Y aunque el viento juega un papel prominente en la aproximación y el piloto no tiene control sobre el mismo, si que puede corregir su efecto mediante los ajustes apropiados en actitud y potencia.

Y ahora la pregunta: ¿que ángulo de descenso es el apropiado?. La respuesta es en principio muy sencilla: aquel que manteniendo la velocidad deseada y sobrevolando los posibles obstáculos, lleve al aeroplano desde el comienzo de la aproximación final hasta el punto de referencia elegido sobre la superficie de aterrizaje.

Dentro de un rango razonable de entre 3º y 6&º, no es usualmente crítico el ángulo elegido, salvo que las circunstancias obliguen, pero es imprescindible que tenga en cuenta las siguientes consideraciones (Fig.6.2.9):

  • Si la senda (ángulo de descenso) es demasiado pronunciada, la maniobra de recogida será más crítica y dicultosa pues necesitará pasar de una actitud de descenso a vuelo nivelado con mayor rapidez, necesitará "anar" mucho más en esa fase.

  • Por el contrario, si la senda es demasiado "plana", tiene que estar seguro que ello le permite evitar los obstáculos. La recogida en este caso es muy suave, pero la desventaja (yo diría peligro) de este tipo de senda es que el avión está volando a baja altura más de la cuenta y eso le deja con muy pocas o ninguna opción en caso de fallo de motor.

En cualquier caso debe ser extremadamente sensitivo a los cambios en este ángulo porque esta es la mejor indicación sobre si la toma se hará lejos del punto estimado o por el contrario no va a llegar al mismo.

Conclusión: "Un buen aterrizaje es invariablemente el resultado de una aproximación bien efectuada". Su tarea como piloto consiste en juzgar adecuadamente la senda de descenso y manejar correctamente la energía total del avión (velocidad + altitud) con el objetivo de posarse sobre la supercie con la mínima energía total posible. Ello exige mantener constantes la velocidad aerodinámica y el ángulo de descenso.

6.2.6 Ayudándose de los sentidos.

Aunque el sentido corporal del movimiento supone una asistencia primaria en los aterrizajes, en las primeras fases del entrenamiento no estará todavía suficientemente desarrollado, así que en principio debe apoyarse algo más en otros, principalmente en el de la vista. El fenómeno de la perspectiva (una pista cambia de forma aparente cuando el punto de observación del piloto cambia) es el más importante para Vd.

Estimar con cierta precisión la distancia y la profundidad es cuestión de práctica, depende de cuan claramente se vean los objetos y requiere que la visión se enfoque propiamente. La velocidad difumina los objetos cercanos, estos se ven moviéndose juntos, mientras que los objetos lejanos permanecen quietos y se ven claramente. En el momento del aterrizaje debe enfocar su visión hacia adelante aproximadamente a la misma distancia que lo haría viajando en un automóvil a la misma velocidad. "La distancia a la cual enfocar la visión debe ser proporcional a la velocidad del aeroplano". Así, a medida que la velocidad disminuye, la distancia a la cual es posible enfocar claramente los objetos se hace más cercana. Ahora bien, si su visión se enfoca muy cerca o directamente hacia abajo, los objetos se vuelven borrosos y las reacciones serán muy abruptas, muy tardías, o ambas cosas.

En aproximación final el comienzo de la pista se ve más ancha que el nal de la misma, eso es obvio, como también lo es que si mantiene un ángulo de descenso constante la forma aparente de la pista también debe permanecer constante. El piloto ve la pista como un paralelogramo que converge hacia el horizonte, con el lado de la aproximación mucho más ancho que el lado opuesto, aunque este último tenga realmente la misma anchura. Si el ángulo de aproximación es muy pronunciado la pista se verá más alargada y estrecha; si este ángulo es muy pequeño, la pista se verá como si fuera más corta y ancha. Obviamente, a medida que la aproximación progresa la pista se verá cada vez más grande, pero si el ángulo permanece constante la relación entre los lados y ángulos del paralelogramo de la pista permanecerá también constante (Fig.6.2.10).

6.2.7 Alineación con el centro de la pista.

En primer lugar, se supone que quiere aterrizar centrado en la pista, no quiere romper las luces de los bordes con el tren ni nada por el estilo, así que comience por alinearse con el eje de la pista. Si ha hecho bien el viraje al final del tramo base se ahorrará bastante trabajo con la alineación.

Aunque la tarea de alinearse con un objeto lejano sin ninguna referencia intermedia es poco familiar a mucha gente, percibir si está centrado o no con la pista es fácil si se ja un poco. Observe en la g.6.2.11 como se vería la pista estando alineado con su eje o desplazado del mismo. Si mira la línea central y ve el punto mas lejano (b) encima del punto más cercano (a) entonces está volando centrado con la pista (gura central). En los otros dos casos está alineado con el borde derecho o con el borde izquierdo y si no corrige la trayectoria aterrizará en ese borde o fuera de la pista.

Si percibe que está desalineado con la línea central, no vuele una trayectoria diagonal hacia el punto de referencia para el aterrizaje, sino que corrija el descentrado ahora y entonces vuele siguiendo la prolongación del eje de pista. El objetivo es tener el avión encima de la línea central de la pista y totalmente alineado con ella cuando haga la recogida. Si está al comienzo de la aproximación y el descentrado es relativamente grande puede corregir alabeando y/o mediante los pedales, pero en corta nal, si el descentrado es poco, o para mantener la alineación, debe acostumbrarse a corregir solo con los pedales. El objetivo es mantener el eje longitudinal del aeroplano alineado con el eje de la pista.

La mayoría de los instructores aconsejan, aunque suene un poco mal, realizar la aproximación manteniendo el eje de la pista entre las piernas.

Desde que inicia la recogida hasta estar rodando sobre la pista, debido a la actitud de morro arriba, seguramente no vea la línea central de la pista; debe pues jarse en otras referencias tales como los bordes de la pista. Recuerde: la línea central de la pista desaparece de su vista en la recogida.

6.2.8 Juzgando si está alto o bajo.

Más importante todavía que mantener la alineación derecha-izquierda con el eje de la pista, es tener la alineación adecuada arriba-abajo en la senda de aproximación.

El procedimiento de usar "trucos locales", tales como pasar a 1000 pies sobre la fábrica de harinas, a 800 pies sobre tal carretera, etc. no es nada recomendable: no funciona en otros aeródromos.

La forma más inteligente de controlar la senda de aproximación es observar y controlar directamente el ángulo de la misma. En una aproximación instrumental, el indicador electrónico dene normalmente un ángulo de 3º; en algunos aeródromos existen ayudas visuales tales como el VASI que también lo denen, pero además de que Vd. no esta habilitado para vuelo instrumental (lo cual le prohíbe aterrizar en instrumental pero no le impide servirse del VASI), la mayoría de las veces no hay tales guías, así que necesita desarrollar su propia percepción de este ángulo. De nuevo ha de recurrir al fenómeno de la perspectiva.

La estrategia a seguir es la siguiente: durante la aproximación Vd. elige un lugar de referencia para aterrizar situado por debajo del horizonte un número determinado de grados; si este ángulo no varia, el aeroplano se dirige hacia ese punto; si se incrementa, está yendo a aterrizar más lejos de lo previsto (ojo con la longitud de la pista); si disminuye, se está quedando corto y no llegará.

La Fig.6.2.12 muestra un ejemplo de lo expuesto: el aeroplano situado en la posición A desciende en una senda cuyo ángulo α le llevará al punto de la superficie x. Tomemos ahora dos lugares arbitrarios en la supercie, anterior (y) y posterior (z) cuyos ángulos al punto A son respectivamente α' y α''. A medida que el avión vaya descendiendo de forma constante, el ángulo α' irá aumentando mientras que el α'' irá disminuyendo, tal como se ve con el avión en la posición B; esto signica que el avión se pasará del punto y y no podrá llegar al punto z. Si su intención era aterrizar en y, el incremento paulatino del ángulo de descenso le debía haber advertido que sobrevolaría dicho punto, mientras que si la idea era aterrizar en z, la disminución constante de dicho ángulo debería haberla interpretado como posición imposible de alcanzar. En ambos casos, se impondría que el piloto corrigiera la senda para aterrizar en el punto deseado.

Cuando el avión pase por el punto y el ángulo α' será de 90º e incrementándose, mientras que al ángulo α'' irá acercándose cada vez más al valor 0º.

Para ayudarse en la percepción de este ángulo, Vd. puede jar un punto de referencia en el morro o el cristal del avión; estabilizado este en la senda de descenso con una velocidad constante, la observación del suelo en relación con dicha referencia le muestra:

  • Las posiciones en el suelo que aparentemente se mueven por debajo de la referencia, son posiciones que serán sobrevoladas.

  • Aquellas que permanecen estacionarias son las que serán alcanzadas por el avión.

  • Las que se mueven por encima son posiciones que no serán alcanzadas.

En la Fig.6.2.13 tenemos un ejemplo de lo mencionado en el párrafo anterior.

  • Si el punto de referencia en el suelo permanece alineado de forma constante respecto a una referencia tomada en el morro o el cristal del aeroplano, se está aproximando a dicho punto correctamente, su senda es la adecuada.

  • Si por el contrario, dicho punto se desplaza hacia arriba de la referencia en el avión, está aproximándose corto y no lo alcanzará a menos que tome alguna medida.

  • Si se desplaza hacia abajo, está aproximándose largo y sobrevolará ese punto salvo que corrija la desviación.

Resumiendo: la clave consiste en tomar una referencia angular y comprobar si la misma se mantiene o varía; si la senda de descenso es constante, el ángulo que forma el lugar estimado en la supercie respecto a la referencia en el avión o respecto al horizonte debe permanecer invariable; si el ángulo cambia Vd. aterrizará en un punto anterior o posterior al estimado en la supercie salvo que adopte alguna medida.

Aunque no le sirva de consuelo, no se desanime con las primeras tomas, practique, practique y practique, desarrollar la experiencia suciente para reconocer exactamente donde va a aterrizar es cuestión de tiempo.

6.2.9 Indicadores visuales de aproximación.

Estos indicadores, instalados en muchos aeródromos aunque no en todos, proporcionan información visual sobre la pendiente de aproximación (senda), de manera que si el piloto mantiene el ángulo de descenso provisto por ellos, sorteará los posibles obstáculos aterrizando en el primer tercio de la pista. No hay que confundir este sistema visual (la información no tiene reejo en ningún instrumento sino que la interpreta el piloto directamente por lo que ve) con el sistema instrumental ILS (el piloto lee e interpreta las indicaciones que los instrumentos reciben de ese sistema).

Aunque hay distintos tipos de dispositivos que proporcionan esta ayuda, aquí solo nos referiremos a los dos más comunes: el VASI y el PAPI. El principio operacional de ambos se basa en la visión por el piloto de dos colores: blanco y rojo.

El VASI (siglas de Visual Approach Slope Indicator) o VASIS (Visual Approach Slope Indicator System), que traducido libremente es algo así como Sistema Visual Indicador de Pendiente de Aproximación, consiste en un sistema de luces, agrupadas en hileras o barras horizontales, dispuestas de forma especial y visibles a 3-5 millas durante el día y hasta 20 millas o más por la noche. La pendiente de descenso denida por el VASI asegura la liberación de obstáculos dentro de un arco de + 10º y una distancia de 4 millas náuticas contadas desde el umbral de la pista.

Las instalaciones de VASI pueden constar de 2, 4, 6, 12 e incluso 16 lámparas dispuestas en 2 o 3 barras, pero la mayoría consisten en 2 barras con 2 luces cada una, instaladas usualmente en el lazo izquierdo de la pista. Normalmente denen una pendiente de 3º aunque en algunos lugares puede ser de hasta 4.5º para prevenir el sobrevuelo seguro de obstáculos. Los pilotos de aeroplanos con altas prestaciones deben prever que usar un VASI con ángulos superiores a 3.5º puede suponer un incremento notable de la longitud de pista requerida para aterrizar.

Las lámparas de cada barra proyectan un haz de luz de dos segmentos, cada uno en un ángulo vertical diferente: el segmento superior es de color blanco y el inferior de color rojo y desde la perspectiva del piloto se ve uno u otro pero no ambos. Las combinaciones de las dos barras de luces y su significado son las que se muestran en la Fig.6.2.14.

Con el avión en la senda correcta (gura central), el piloto debe ver una barra (la mas cercana) con luces blancas y otra (la mas lejana) con luces rojas; si desciende por encima de la senda (gura izquierda) verá ambas barras blancas mientras que si lo hace por debajo (gura derecha) las verá de color rojo. Resumiendo: si ve las dos barras de color blanco está alto, si las ve rojas está bajo, y si ve una de cada color está en la senda correcta.

El PAPI (Precision Approach Path Indicator) es un VASI de precisión con la única diferencia que en lugar de disponer las luces en dos barras se disponen en una sola. Usa el mismo principio que el VASI y sus indicaciones son las mostradas en la Fig.6.2.15. Aunque en la gura se muestra la barra delante de la pista por cuestiones de dibujo, realmente la barra esta instalada en el lado izquierdo.

Ambos indicadores son utilizables tanto de día como de noche y una misma pista puede tener un VASI en un extremo (p.ejemplo pista 04) y un PAPI en el otro (pista 22), o un VASI o PAPI en cada uno pero con ángulos diferentes, etc. No se si estaré desactualizado, pero por ejemplo entrando por la pista 04 de Lanzarote (Canarias) un PAPI dene una senda de 3º mientras que por el lado contrario (entrando por la pista 22) la senda de 3.9º está indicada por un VASI.

Bajo ciertas condiciones atmosféricas o con el sol de frente, los haces blancos pueden verse como amarillentos o algo anaranjados. No sucede lo mismo con los haces rojos que deben permanecer inalterables.

6.2.10 Resumen de la aproximación final.

Y ahora los criterios generales para realizar la aproximación final.

  • Inmediatamente después de completar el viraje desde el tramo base, el eje longitudinal del aeroplano debería estar alineado con el eje de la superficie de aterrizaje, de manera que la deriva por viento lateral, si la hay, sea rápidamente reconocida y corregida.

  • Alinee el avión con el centro de la pista y mantenga esta alineación durante toda la aproximación aplicando pedales (timón de dirección). El objetivo es estar volando encima del centro de la pista, totalmente alineado con ella cuando se haga la recogida. El caso de aterrizaje con viento cruzado se tratará en un capítulo posterior.

  • Con hélice de paso variable, mueva la palanca todo adelante (paso corto). Si tiene que hacer motor y al aire este es el paso que le proporciona el mejor desarrollo de la potencia.

  • Algunos aviones son especialmente dados a formar hielo en el carburador, principalmente con tiempo frío y descendiendo. Si es necesario aplique calefacción al carburador pero recuerde quitarla unos pies antes (unos 100) de comenzar la recogida. Si tuviera necesidad de realizar un "motor y al aire", la calefacción al carburador le resta potencia y además al abrir gases a tope podría producirse detonación.

  • Si va a aterrizar con full flap, termine de extenderlo ahora y espere un poco a que el avión se adapte a la nueva configuración.

  • Puede que necesite hacer pequeños ajustes en actitud y potencia para mantener la velocidad y el ángulo de descenso.

  • En cualquier caso, una vez tenga estabilizadas actitud y velocidad, compense el avión para volar "sin manos".

  • Si todavía no ha recibido permiso de la torre para aterrizar, comunique su posición en final y espere la autorización. Recuerde que sin ella no debe aterrizar.

  • El que la torre le conceda permiso no significa que deje de prestar atención a otros tráficos. La responsabilidad final sobre el aeroplano y sus ocupantes recae en el piloto.

  • Controle la velocidad y el ángulo de descenso, manténgalos constantes. Ahora más que nunca recuerde que la palanca de gases controla la tasa de ascenso/descenso y el volante de control el ángulo de ataque y por añadidura la velocidad. El objetivo es aterrizar en el centro del primer tercio de la pista con la velocidad adecuada.

  • Si el aeródromo dispone de ayudas visuales a la aproximación (VASI o PAPI) sírvase de sus indicaciones, pero recuerde que son ayudas y no sustitutos de sus decisiones.

  • Si ha hecho bien su trabajo en los tramos anteriores y calcula correctamente el comienzo de la aproximación, no tendrá que realizar apenas correcciones en velocidad y/o ángulo de descenso.

  • Algunos aeroplanos tienen una baja tasa de descenso, recorren una buena distancia y descienden suavemente (planean mucho). Otros sin embargo tienen esta tasa más elevada y descienden más rápidamente (planean poco). En este último caso puede ser más cómodo para el piloto mantener un régimen suave de potencia y así aminorar la tasa de descenso. También, un régimen suave de potencia puede hacer más fácil la maniobra con full flap.

Como irá comprobando, la facilidad o complicación de cada fase depende en gran medida de como se hayan realizado las anteriores. Por decirlo de alguna manera, los desajustes de una fase hay que corregirlos en la siguiente o si no se acumularán y habrá que corregirlos todos en el peor de los momentos: justo en la recogida cuando se está con poca velocidad y cercano al suelo.

Sumario:

  • Aterrizar un aeroplano, consiste en permitir que este contacte con el terreno a la velocidad vertical más baja posible, y en circunstancias normales también a la velocidad horizontal (respecto al suelo) más baja posible, manteniendo un control adecuado.vEn denitiva, se trata de poner al aeroplano en pérdida a muy pocos centímetros del suelo manteniendo el control direccional.

  • Tenga a mano y visible la lista de chequeo, procurando seguir unas pautas concretas que le proporcionen seguridad: "viento en cola...". Si prefiere memorizarla, hágalo antes de entrar al circuito de tráfico.

  • La checklist debe cubrir tres fases: aproximación, aterrizaje y motor y al aire (aterrizaje frustrado). Asegúrese que la lista corresponde a su modelo de aeronave.

  • En líneas generales, las fases de un aterrizaje son: tramo base (base leg), aproximación (approach), recogida (are), toma (touchdown) y carrera nal (after landing roll).

  • Comience la preparación del aeroplano para el aterrizaje en el último tercio del tramo viento en cola. El paso del avión perpendicular al comienzo de la pista es una buena referencia para comenzar las operaciones. Trate de visualizar la trayectoria de toda la aproximación.

  • Preste atención a la presencia de tráficos que le precedan en la maniobra. No vire a base hasta que el precedente inmediato pase en dirección a la pista por el borde de su ala; después ajuste velocidad y distancia para que aquel pueda aterrizar y abandonar la pista. Recuerde que no puede aterrizar si la pista no está totalmente despejada.

  • Vuele el tramo base perpendicular a la pista corrigiendo la deriva producida por el viento.

  • Hasta comenzar el descenso, mantenga la altitud de circuito y ajuste la velocidad a una cercana a la de aproximación.

  • Siga completando los procedimientos de la checklist y calcule cuando comenzar el descenso y donde virar a aproximación final en función de su velocidad, configuración elegida para aterrizar, altura del circuito, fuerza del viento, etc.

  • No haga virajes con un grado de alabeo pronunciado (superior a 30º) pues se encuentra con poca velocidad y a baja altura. Recuerde que a mayor grado de alabeo mayor es la velocidad de pérdida.

  • El viraje a aproximación final debe dejar al aeroplano enfrentado al eje central de la pista. La altitud y distancia debe permitirle franquear los obstáculos y a su vez realizar una aproximación suficientemente larga, que le permita estimar y corregir tanto el punto de contacto como la senda de aproximación, pero no tan larga que no pueda llegar en caso de fallo de motor.

  • Haga la aproximación final con la mejor velocidad recomendada según la configuración adoptada (flaps, etc.) y un ángulo de descenso que le permita hacer una recogida suave. El objetivo es aterrizar en el primer tercio de la pista.

  • Aunque el control del ángulo de ataque es importante en todas las fases de vuelo, lo es mucho más en aproximación nal, con el avión volando lento y bajo intencionadamente. Manténgalo mediante la percepción y el control de la actitud y el ángulo de descenso. Utilice el compensador y controle el ángulo de ataque.

  • Si el ángulo de descenso es muy pronunciado o la velocidad muy elevada, la recogida se hace mas complicada. Si por el contrario, el ángulo de descenso es muy pequeño (senda plana), la posible facilidad en la recogida no compensa en absoluto el riesgo de no alcanzar la pista si falla el motor.

  • Un buen aterrizaje es invariablemente el resultado de una aproximación bien efectuada. Juzgue la senda de descenso y maneje correctamente la energía total del avión (velocidad + altitud) para posarse sobre la supercie con la mínima energía total posible. Mantenga la velocidad aerodinámica y la senda de aproximación con un ángulo de descenso constante.

  • Utilice los sentidos, especialmente el de la perspectiva (en distancia y en profundidad) para mantener la alineación con la pista y el ángulo de descenso. "La distancia a la cual enfocar la visión debe ser proporcional a la velocidad del aeroplano".

  • Juzgue si está alto o bajo del punto de referencia para aterrizar en función del ángulo con que observa dicho punto. Si a medida que desciende este ángulo se incrementa, sobrevolará esa referencia; si disminuye, no llegará a ella. En ambos casos se impone tomar alguna medida (siguiente capítulo).

  • Tanto el VASI como el PAPI proporcionan al piloto ayuda visual para mantener la senda de aproximación adecuada.

  • Aterrizar bien es cuestión de tiempo, la mejor recomendación es que: practique, practique y practique.

(1). Hay una situación potencialmente peligrosa: la pérdida con controles cruzados (crosscontrol stall). Esta se produce cuando para no incrementar el ángulo de alabeo se recurre a aumentar la tasa de giro, aplicando más pie del lado del viraje y alerón contrario para mantener el alabeo. Como en esas circunstancias el morro del avión tiende a caer, si tira del volante de control y entra en pérdida ¡¡PELIGRO!! el avión se pondrá boca abajo, lo cual es muy dicil de recuperar y a baja altura imposible. Veremos esto con más detalle en el capítulo de pérdidas.

(2). Para calcular 1/3 o 1/4 de Vso se entiende que tomamos como referencia la Vso calibrada