Norma vectorial

Norma vectorial

Un vector es un elemento de un espacio vectorial del que, en ocasiones, especialmente en física y geometría, interesa conocer su longitud. Para ello se hace necesario definir unoperador norma que determine la longitud o magnitud del vector bajo consideración ya que este acto, pese a lo que pudiéramos creer, no es un problema trivial; especialmente desde la aparición de las geometrías no euclídeas para las que aparece, asociada al concepto de longitud, la noción de geodésica. Para ampliar estas ideas conviene conocer lageometría riemanniana y la geometría diferencial.

Por tanto, basándonos en las propiedades básicas que la determinación de la longitud tiene en el espacio euclídeo habitual, definimos matemáticamente qué condiciones mínimas debe satisfacer un operador que actúe sobre un vector para poder ser considerado un operador norma en cualquier geometría. De esta forma, aparecen varias posibilidades que han sido muy fructíferas en diversos campos entre los que cabe destacar la Astrofísica y la Cosmología.

En espacios vectoriales es sinónimo de longitud de un vector.

Definición de norma euclídea

En un espacio euclídeo ordinario los vectores son representables como segmentos orientados entre puntos de dicho espacio. Dado un vector de un espacio vectorial euclídeo, la norma de un vector se define como la distancia euclídea (en línea recta) entre dos puntos A y B que delimitan dicho vector. De hecho, en un espacio euclídeo la norma de un vector coincide precisamente con el módulo del vector

.

  • En dos dimensiones:

siendo y y O el origen de coordenadas de dicho espacio.

  • Extendiendo lo anterior al espacio euclídeo de tres dimensiones, es también elemental que:

siendo y

  • En el caso general de un espacio euclídeo de n dimensiones se tiene:

siendo y .

De lo anterior se sigue que, fijada una base ortonormal

en la que un vector viene dado por sus componentes en esta base,

, entonces la norma de dicho vector viene dada por:

Definición matemática general

La definición general de norma se basa en generalizar a espacios vectoriales abstractos la noción de módulo de un vector de un espacio euclídeo. Recuérdese que en un espacio no euclídeo el concepto de camino más corto entre dos puntos ya no es identificable necesariamente con el de la línea recta; por ello, se utilizan las propiedades operacionales de la norma euclídea definida más arriba para extraer las condiciones que debe cumplir la "longitud de un vector", o norma vectorial, en un espacio vectorial cualquiera. Estas condiciones básicas son:

  • Siempre es no negativa e independiente del sentido (orientación) de la medición.

  • La longitud debe ser directamente proporcional al tamaño (es decir, doble -o triple- de tamaño significa doble -o triple- de longitud).

  • La longitud entre dos puntos será siempre menor o igual que la suma de longitudes desde esos mismos dos puntos a un tercero diferente de ellos (desigualdad triangular: la suma de dos lados de un triángulo nunca es menor que el tercer lado, también generalizada en la desigualdad de Cauchy-Schwarz).

Esto genera la siguiente definición matemática:

Sea

un espacio vectorial sobre un cuerpo y un vector del espacio. Se dice que es un operador que define la norma de , y escribimos

, si cumple:

  1. Para todo

  1. de su norma ha de ser no negativa, y será cero si y sólo si es el vector cero: si y .

  2. Para todo

  1. de y para todo k de se satisface que ·

  2. Para todos

  1. e de se cumple que (desigualdad triangular).

Cualquier operador que cumpla estas tres condiciones, y en cualquier geometría, será un operador norma.

Ejemplos

A continuación se muestran algunos ejemplos de posibles operadores norma, que satisfacen la definición matemática general:

  • Para un vector

se define la norma-p como:

Así, para el caso

se obtiene , y para el caso se obtiene la norma euclídea explicada más arriba.

  • Otro operador norma sería, la norma del máximo:

Donde . Para un espacio de dimensión infinita numerable se podría escribir:

La elección del subíndice

para esta norma se debe al hecho de que:

donde x* es el complejo conjugado de x

Si dicho espacio es un espacio de Hilbert entonces el espacio con la norma asociada al producto escalar es un espacio de Banach.

Ver también

Tensor métrico

En geometría de Riemann, el tensor métrico es un tensor de rango 2 que se utiliza para definir conceptos métricos como distancia, ángulo y volumen en un espacio localmente euclídeo.

Definición

Una vez que se elige una base local, el tensor métrico aparece como una matriz, notada convencionalmente G (véase también métrica). La notación gij se utiliza convencionalmente para los componentes del tensor. Así el tensor métrico g se expresa fijada una base coordenada como:

O más cómodamente usando el convenio de sumación de Einstein (que usaremos de aquí en adelante para el resto del artículo como):

En física es muy común escribir la métrica como el cuadrado del elemento de longitud, dado que el tensor es simétrico la notación física es equivalente a la notación anterior:

Longitud, ángulo y volumen]

La longitud de un segmento de una curva dada parametrizada por

, desde hasta , se define como:

El ángulo entre dos vectores U y V (o entre dos curvas cuyos vectores tangentes U y V ) se define como:

El n-volumen de una región R de una variedad de dimensión n viene dado por la integral extendida a dicha región de la n-forma de volumen:

Para computar el tensor métrico de un conjunto de ecuaciones que relacionan el espacio con espacio cartesiano (gij = ηij: vea delta de Kronecker para más detalles), compute eljacobiano del conjunto de ecuaciones, y multiplique el (producto exterior) traspuesto de ese jacobiano por el jacobiano.

Ejemplos de métricas euclídeas

Una métrica euclídea no es otra cosa que una métrica arbitraria definida sobre un espacio euclídeo. Un espacio métrico es euclídeo si en el tensor de curvatura es idénticamente nulo en todo el espacio. Cuando se usan coordenadas cartesianas en un espacio euclídeo las componentes del tensor tensión son constantes y, por tanto, los símbolos de Christoffel son también nulos. Sin embargo, en muchos problemas conviene usar otro tipo de coordenadas, como por ejemplo las coordenadas polares, cilíndricas o esfércias, en este caso aun cuando el espacio es euclídeo las componentes del tensor métrico expresado en estas coordenadas no son constantes, y los símbolos de Christoffel no se anulan. A continuación se dan algunos ejemplos de coordenadas frecuentes.

Los sistemas de coordenadas ortogonales se caracterizan porque en esos el tensor métrico tiene una forma diagonal. A continuación se presentan ejemplos de métricas para un espacio euclídeo, el hecho de que el espacio es localmente euclídeo queda reflejado en que el tensor de curvatura calculado para todas las métricas que siguen es idénticamente nulo.

Coordenadas cartesianas

Dado un tensor métrico euclidiano en dos dimensiones, dado en coordenadas cartesianas

:

Puesto que

y .

La longitud de una curva C parametrizada mediante el parámetro t se reduce a la fórmula familiar del cálculo (teorema de Pitágoras):

o bien en la notación más familiar:

Coordenadas polares]

Coordenadas polares:

Coordenadas cilíndricas

Coordenadas cilíndricas:

Coordenadas esféricas

Coordenadas esféricas:

Ejemplos de métricas no euclídeas

Todos los ejemplos anteriores están asociados a métricas euclídeas, caracterizadas por el hecho de que el tensor de curvatura se anula idénticamente en todos los puntos.

Métricas no euclídeas en geometría

Sobre una esfera de radio R, parametrizada por el ángulo polar y el ángulo azimutal (θ, φ) se suele considerar el tensor métrico inducido por la distancia euclídea del espacio tridimensional que contiene a la esfera:

Puede probarse que mediante ninguna transformación posible de coordenadas el tensor métrico en esas coordendas será igual al tensor métrico del espacio euclídeo bidimensional, lo cual evidencia que ese tensor representa una geometría no euclídea (además su curvatura escalar es precisamente 1/R). Puede probarse que dada una curva sobre dicha esfera

, su longitud viene dada:

Además sucede que fijados dos puntos sobre la esfera la curva de distancia mínima entre dos puntos, es además una curva con curvatura mínima. La curva de longitud mínima entre dos puntos de una esfera puede obtenerse buscando la intersección de un plano que contenga a los dos puntos y al centro de la esfera, entonces la interasección entre dicho plano y la esfera es un círculo máximo, y por tanto con radio máximo R (y, por tanto, de curvatura 1/R mínima).

Una curva de curvatura mínima o longitud mínima en una variedad riemanniana se denomina geodésica. Y en una esfera pensada como variedad riemanniana los círculos máximos son curvas geodésicas.

Métricas no euclídeas en física

De acuerdo con la teoría de la relatividad general en presencia de materia, la geometría del espacio-tiempo no es plana, es decir, está caracterizada por un tensor de curvatura que no es idénticamente nulo en todos los puntos de la variedad. Este tensor de curvatura puede ser relacionado con tensor de energía-impulso que representa el contenido material del modelo de universo que se esté analizando. Algunos ejemplos de tensores métricos no euclídeos procedentes de la teoría relatividad general que se usan como modelos de universo son:

Por ejemplo a grandes rasgos la métrica solar lejos de los planetas, satélites y otras concentraciones de materia puede considerarse como un ejemplo bastante aproximado de métrica de Schwarzschild, siendo sus componentes (en las coordenadas cuasi-esféricas de Schwarzschild centradas en el sol:

):

Obsérvese la submatriz de 3x3 que se refiere a las coordenadas espaciales es similar a una métrica esférica difiriendo sólo en el término

y la métrica resulta plana y por tanto representa un espacio euclídeo, sin embargo, en la métrica de Schwarzschild los términos

caracterizan la curvatura del espacio-tiempo por culpa del campo gravitatorio del sol.

Por otro lado, la métrica de Friedman-Lemaître-Robertson-Walker se considera que podría ser un modelo adecuado del universo a escalas bastante más grandes que la de una galaxia. En el sistema comóvil pseudo-esférico

esta métrica resulta ser:

Para

resulta un universo abierto que se expande sin límite, mientras que para la métrica ante anterior describe un universo cerrado y finito que tras expandirse hasta un máximo recolapsa sobre sí mismo dando lugar al big crunch.

Espacio vectorial normado

En matemática un espacio vectorial se dice que es normado si en él se puede definir una norma vectorial. Podemos señalar los siguientes hechos que ayudan a comprender la importancia del concepto de espacio normado:

Definición

Un espacio vectorial V sobre un cuerpo

en el que se define un valor absoluto (generalmente o ) se dice que es normado si en él se puede definir una norma, es decir, una aplicación

, que verifica:

  1. No negatividad. Para todo

  1. de su norma ha de ser positiva, y será cero si y sólo si es el vector cero: si y .

  2. Homogeneidad. Para todo

  1. de y para todo k de se satisface que · donde | | es el módulo o valor absoluto.

  2. Desigualdad triangular. Para todos

  1. e de se cumple que .

Generalmente se denotará a al espacio vectorial normado y cuando la norma sea clara simplemente por .

Ejemplos

De dimensión finita

  • , estudiados en el análisis clásico.

  • Las matrices cuadradas de orden n sobre

  • :

De dimensión infinita

Distancia inducida

En todo espacio vectorial normado se puede definir la distancia

:

con la cual (V,d) es un espacio métrico.

Espacios vectoriales normados de dimensión finita

Se cumplen los siguientes resultados (que generalmente no son ciertos para espacios de dimensión infinita):

  • Todas las normas definidas en el espacio son equivalentes, es decir, definen la misma topología. La convergencia o divergencia de una sucesión no depende de la norma escogida. El resultado no es cierto para espacios de dimensión infinita siendo siempre posible encontrar dos normas que no son equivalentes.

  • El espacio es completo, es decir, es un espacio de Banach. Como consecuencia, todo subespacio de dimensión finita de un espacio vectorial (no necesariamente de dimensión finita) es cerrado.

  • Un espacio vectorial normado es de dimensión finita si y sólo si la bola unidad es compacta.

  • Todo funcional lineal es continuo. Si el espacio tiene dimensión infinita, existen funcionales lineales no continuos.

  • Teorema de Heine-Borel o teorema de Borel-Lebesgue. Un subconjunto del espacio vectorial es compacto si y solo si es cerrado y acotado.

Espacios normados de dimensión infinita

En análisis funcional, teoría de ecuaciones diferenciales e incluso en mecánica cuántica intervienen espacios normados de dimensión infinita, en especial espacios de Banach y espacios de Hilbert. Ambos tipos de espacios son métricamente completos, siendo todo espacio de Hilbert trivialmente también un espacio de Banach (al revés sólo es cierto si la norma del espacio de Banach satisface la ley del paralelogramo).

Los espacios de Banach son ampliamente usados para discutir ecuaciones de evolución que involucran ecuaciones diferenciales ordinarias (en concreto un problema bien definidoestá definido sobre un espacio de Banach).

Espacio métrico

En matemática, un espacio métrico es un conjunto junto con una función distancia (porque cumple con unas propiedades concretas atribuidas a las distancias) definida sobre él, de modo que cualquier par de puntos (o elementos) del conjunto están a una cierta distancia asignada por dicha función.

En particular, cualquier espacio métrico será, además, un espacio topológico porque cualquier función de distancia definida sobre un conjunto dado induce una topología sobre dicho conjunto. Se trata de la topología inducida por las bolas abiertas asociadas a la función distancia del espacio métrico.

Definiciones

Definición de espacio métrico

Formalmente, un espacio métrico es un conjunto

(a cuyos elementos se les denomina puntos) con una función distancia asociada (también llamada una métrica)

(donde es el conjunto de los números reales). Decir es una distancia sobre es decir que para todo

, , en , esta función debe satisfacer las siguientes condiciones o propiedades de una distancia:

  1. (positividad)

  1. (reflexividad)

  1. (identidad de los indiscernibles)

  1. (simetría)

(desigualdad triangular).

Algunas definiciones asociadas a un espacio métrico

Sea

un espacio métrico, y sean y un punto de y un número real positivo o cero, respectivamente:

  • Se llama bola (abierta) centrada en

  • y de radio , al subconjunto de : , denotado usualmente como , o como .

  • Se llama bola cerrada centrada en

  • y de radio , al subconjunto de : , denotado usualmente como o como o también como .

  • En análisis funcional la terminología puede llevar un poco a confusión, pues a la bola abierta de radio

  • y centro se la suele denotar por

  • o por , mientras -y aquí viene la posible confusión- a la bola cerrada de centro y radio se la denota por o por .

  • Algunos autores utilizan la expresión disco en lugar de bola, así es que se puede hablar en términos de disco abierto y disco cerrado. En particular, esta terminología se utiliza en Variable Compleja, y cuando se considera la distancia euclídea sobre el conjunto

  • .

  • Se llama esfera centrada en

  • y de radio , al subconjunto de : , denotado usualmente como , o como ..

Topología de un espacio métrico

La distancia

del espacio métrico induce en una topología, y por tanto el espacio es, a su vez, un espacio topológico al tomar como subconjuntos abiertos para la topología a todos los subconjuntos

que cumplen

.

Esto es a todos los subconjuntos

para los cuales cualquier punto en es el centro de alguna bola de radio positivo totalmente incluida en , o lo que es lo mismo: U no tiene puntos en la frontera; no tiene frontera.

Dicha topología se denomina topología inducida por

en .

Podemos entonces interpretar intuitivamente que un conjunto abierto es entonces una parte que tiene un cierto "espesor" alrededor de cada uno de sus puntos.

Un subespacio métrico de un espacio métrico es subespacio topológico del espacio topológico , donde es la topología en

inducida por . Es decir, hereda de la topología inducida por .

Un entorno

de un punto de un espacio métrico no es más que un subconjunto de forma que exista un tal que la bola abierta

. El conjunto es base de la topología inducida por , y también es base de entornos de dicha topología. Como

es denso en , resulta entonces que también es base de entornos de la topología inducida por

. En consecuencia, todo espacio métrico cumple el Primer Axioma de Numerabilidad.

Todo espacio métrico es espacio de Hausdorff. Además, al igual que ocurre en espacios pseudométricos, para los espacios métricos son equivalentes las siguientes propiedades: ser espacio de Lindelöf, cumplir el Primer Axioma de Numerabilidad y ser separable.

Sistemas axiomáticos alternativos

La propiedad 1 (

) se sigue de la 4 y la 5. Algunos autores usan la recta real extendida y admiten que la distancia tome el valor . Cualquier métrica tal puede ser reescalada a una métrica finita (usando o ) y los dos conceptos de espacio métrico son equivalentes en lo que a topología se refiere. Una métrica es llamada ultramétrica si satisface la siguiente versión, más fuerte, de la desigualdad triangular:

.

Si se elimina la propiedad 3, se obtiene un espacio pseudométrico. Sacando, en cambio, la propiedad 4, se obtiene un espacio quasimétrico. No obstante, perdiéndose simetría en este caso, se cambia, usualmente, la propiedad 3 tal que ambas

y son necesarias para que

e se identifiquen. Todas las combinaciones de lo anterior son posibles y referidas por sus nomenclaturas respectivas (por ejemplo como quasi-pseudo-ultramétrico).

Ejemplos

  • Sea X un conjunto cualquiera no vacío y definamos d

Entonces d es una métrica en X, llamada métrica discreta y (X,d) es espacio métrico; (X, d) se llama espacio discreto; ver Análisis real de Haaser y Sullivan.

  • Los números reales con la función distancia d(x, y) = |y - x| dada por el valor absoluto, y más generalmente n-espacio euclídeo con la distancia euclidiana, son espacios métricos completos. El sistema de los números complejos C es un espacio métrico . C como espacio métrico es igual a RxR.

  • Más generalmente aun, cualquier espacio vectorial normado es un espacio métrico definiendo d(x, y) = ||y - x||. Si tal espacio es completo, lo llamamos espacio de Banach.

  • Si X es un conjunto y M es un espacio métrico, entonces el conjunto de todas las funciones acotadas f : X -> M (i.e. aquellas funciones cuya imagen es un subconjunto acotado de M) puede ser convertido en un espacio métrico definiendo d(f, g) = supx en X d(f(x), g(x)) para cualesquiera funciones acotadas f y g. Si M es completo, entonces este espacio es completo también.

  • Si X es un espacio topológico y M es un espacio métrico, entonces el conjunto de todas las funciones continuas acotadas de X a M forma un espacio métrico si definimos la métrica como antes: d(f, g) = supx en X d(f(x), g(x)) para cualesquiera funciones continuas acotadas f y g. Si M es completo, entonces este espacio es completo también.

  • Si M es un espacio métrico, podemos convertir al conjunto K(M) de todos los subconjuntos compactos de M en un espacio métrico definiendo distancia de Hausdorff d(X, Y) = inf{r: para cada x en X existe un y en Y con d(x, y) < r y para cada y en Y existe un x en X con d(x, y) < r). En este métrica, dos elementos están cerca uno de otro si cada elemento de un conjunto está cerca de un cierto elemento del otro conjunto. Se puede demostrar que K(M) es completo si M es completo.

Un análisis lógico

  • El concepto métrico fundamental es el de función corta, los morfismos de la categoría métrica (los isomorfismos, i.e. aplicaciones bi-cortas, son las isometrías), pero su expresión usual usa el orden y la suma en los reales positivos luego,

  • 1) Es obvio que : | x - |x - y | | = y es lo mismo que x = 0 o yx, luego distancia en los reales positivos da orden débil allí, orden fuerte (yx ssi ... ) es difícil, pero posible, si se acepta una solución de |x - y | = y i.e. y = x / 2.

  • 2) | d(y, z) - |d(y, z) - (f(y), f(z)) | | = (f(y), f(z)) expresa que f es una función corta, sin ninguna referencia a un orden en los reales positivos.

  • 3) La siguiente equivalencia de la desigualdad triangular

| d(x, y) - d(x, z) | ≤ d(y, z)

expresa (sin ninguna referencia a una operación en los reales positivos, |x - y| es la distancia allí) el hecho que d(x, -) es función corta (luego uniforme, luego continua). d: x - >d(x,-) es una isometría.

  • Reuniendo ambas : | d(y, z) - |d(y, z) - | d(x, y) - d(x, z) | | | = | d(x, y) - d(x, z) | expresa desigualdad triangular directamente.

  • un leve cambio : | d(y, z) - |d(z, y) - | d(x, y) - d(x, z) | | | = | d(x, y) - d(x, z) | expresa desigualdad triangular y simetría (hacer z = x y usar | x - d(y, y)| = x).

Espacios metrizables

Un espacio topológico

se dice que es metrizable cuando existe una distancia cuya topología inducida sea precisamente la topología .

Un problema fundamental en Topología es determinar si un espacio topológico dado es o no metrizable. Existen diversos resultados al respecto.

Teorema de metrización de Urysohn

Todo espacio topológico regular que cumpla el Segundo Axioma de Numerabilidad es metrizable.

Teorema de metrización de Nagata-Smirnov (condición suficiente)

Todo espacio regular con una base numerable localmente finita es metrizable.

Teorema de metrización de Nagata-Smirnov (condición necesaria)

Todo espacio metrizable tiene una base numerable localmente finita.

Teorema de metrización de Stone

Todo espacio metrizable es paracompacto.

Teorema de metrización de Smirnov

Un espacio topológico es metrizable si y solo si es paracompacto y localmente metrizable.

Teorema de metrización de espacios completamente separables

Un espacio topológico completamente separable es metrizable si y solo si es regular.

Ver también