Hidrato de metano
El hidrato de metano, hielo combustible un metro cúbico de este «oro submarino» equivale a 164 metros cúbicos de gas metano.
El hidrato de metano, también denominado clatrato de metano o clatrato hidrato de metano, es un compuesto de inclusión de tipo clatrato hidrato en el cual moléculas de agua conforman una estructura cristalina mediante enlaces por puentes de hidrógeno dando lugar a cavidades en cuyo interior se encuentran moléculas de metano (u otros hidrocarburos ligeros como etano y propano cuando se trata de hidrato de gas natural) que estabilizan la estructura que, de otro modo, es inestable termodinámicamente, pero que no establecen enlaces químicos con las moléculas de agua de la estructura.
Tozos de hielo combustible extraídos en el Golfo de México por el Servicio Geológico de los Estados Unidos USGS)
Formación de hidrato de metano
Los hidratos de metano son moléculas de metano en estructuras de moléculas de agua, que bajo condiciones de presión y temperatura que existen en el talud continental y en las regiones polares (permafrost) se convierten en sustancias sólidas cristalinas (hielos de metano). Se encuentran principalmente en los poros de los sedimentos arenosos cementándolos.
En el medio marino se explica su formación de una forma un tanto compleja. El metano que resulta de la descomposición de los organismos vivientes en el agua, reacciona con el agua a punto de congelarse formando hidratos, que después se aposentarán en los fondos marinos. La reacción se produce en condiciones de presión y temperatura particulares. El hidrato de metano es particularmente inestable.
Un metro cúbico de hidrato de metano contiene aproximadamente 164 metros cúbicos de gas metano con tan solo 0.84 metros cúbicos de agua. Este "hielo" es inflamable: si se le acerca una llama, libera gas metano que arderá.
Los hidratos de metano constituyen una fuente energética alternativa de gran proyección mundial, con reservas estimadas que prácticamente duplican las reservas convencionales actualmente reconocidas para los recursos energéticos fósiles. Así, se pretende utilizar este compuesto como otro combustible más adelante, de manera similar al petróleo o el gas natural.
Durante su extracción es bastante difícil que no se libere metano. Esto ha limitado su explotación, ya que si se libera metano a la atmósfera, podríamos incrementar el efecto invernadero de manera considerable, con un efecto 21 veces superior al del dióxido de carbono.
En 1810 Humphrey Davy y Michael Faraday describen por primera vez los hidratos de gas. En 1888 Villard encuentra experimentalmente hidratos de CH4, C2H6, C2H2 y N2O.
En 1930 Hammerschmidt determina que los hidratos bloquean gasoductos e investiga los gases inhibidores.
En 1960 los soviéticos reconocen el hidrato de metano como una posible fuente de energía, y descubren y producen en volúmenes pequeños el primer depósito de hidratos en el permafrost siberiano.
En 1990, se realiza la caracterización inicial y cuantificación de hidratos de metano en depósitos en aguas profundas. En 2000, empiezan los esfuerzos por cuantificar las características y abundancia de los hidratos, y comienzan los esfuerzos de aprovechar el gran potencial de los hidratos como combustible.
Estructura del complejo de inclusión 3:1de urea y 1,6-diclorohexano. El marco está compuesto por moléculas de urea que están unidas por enlaces de hidrógeno, dejando aproximadamente canales hexagonales en los que se alinean las moléculas del clorocarbon (el oxígeno es de color rojo, el nitrógeno es azul, el cloro es verde).
Clatrato de metano en plena combustión.
Un clatrato, estructura de clatrato o compuesto de clatrato (del latín clathratus, "rodeado o protegido, enrejado") es una sustancia química formada por una red de un determinado tipo de molécula, que atrapa y retiene otro tipo de molécula.
Un hidrato gaseoso es, por ejemplo, un tipo especial de clatrato en el que la molécula de agua forma una estructura capaz de contener un gas.
Un clatrato es, por tanto, un compuesto no estequiométrico en el cual moléculas del tamaño conveniente (2-9 Angstrom) quedan atrapadas en las cavidades que aparecen en la estructura de otro compuesto. El agua congelada puede crear celdas capaces de contener moléculas de gas, enlazadas mediante puentes de hidrógeno. Numerosos gases de bajo peso molecular (O2, N2, CO2, CH4, H2S, argón, kriptón, xenón, entre otros) forman clatratos en ciertas condiciones de presión y temperatura. Estas celdas son inestables si están vacías, colapsándose para formar hielo convencional.
Ejemplos de moléculas acompañantes.
Los complejos del clatrato son varios e incluyen, por ejemplo, la interacción de fuertes enlaces químicos entre las moléculas del anfitrión y las moléculas del huésped, o las moléculas del huésped fijadas en el espacio geométrico de las moléculas del anfitrión mediante una fuerza intermolecular débil. Los ejemplos típicos de los compuestos anfitrión-huésped son: compuestos de inclusión y compuestos de intercalación. Una molécula que se ha investigado mucho como anfitrión es el compuesto de Dianin (4-p-hidroxifenil-2,2,4-trimetilcromano).
Por un lado se han empezado a investigar las posibles propiedades semiconductoras y superconductoras de los clatratos de silicio. Por otro, se cree científicamente que los fondos marinos han atrapado grandes cantidades de metano en configuraciones similares (clatratos de metano), que son liberadas repentinamente ya sea por efectos mecánicos o físicos.
Interacción entre una molécula de metano y varias moléculas de agua. Vista 1
Interacción entre una molécula de metano y varias moléculas de agua. Vista 2