Вам неодноразово доводилося розв’язувати задачі за допомогою складання рівнянь. Різноманітність цих задач є найкращим підтвердженням універсальності цього методу. У чому ж секрет його сили?
Річ у тім, що умови несхожих між собою задач удається записати математичною мовою. Отримане рівняння — це результат перекладу умови задачі з української мови математичною.
Часто умова задачі є описом якоїсь реальної ситуації. Складене за цією умовою рівняння називають математичною моделлю даної ситуації.
Зрозуміло, щоб отримати відповідь, рівняння треба розв’язати.
Для цього в алгебрі розроблено різні методи та прийоми. З деякими з них ви вже знайомі, вивчення багатьох інших на вас ще чекає.
Знайдений корінь рівняння — це ще не відповідь задачі. Треба з’ясувати, чи не суперечить отриманий результат реальній ситуації, яка описана в умові задачі.
Розглянемо, наприклад, такі задачі.
1) За 4 год зібрали 6 кг ягід, причому кожної години збирали однакову за масою кількість ягід. Скільки кілограмів ягід збирали щогодини?
2) Кілька хлопчиків зібрали 6 кг ягід. Кожен із них зібрав по 4 кг. Скільки хлопчиків збирали ягоди?
За умовою обох задач можна скласти одне й те саме рівняння
4x = 6, коренем якого є число 1,5.
Проте в першій задачі відповідь «щогодини збирали 1,5 кг ягід» є прийнятною, а в другій —
«ягоди збирали півтора хлопчика» — ні. Тому друга задача не має розв’язків.