Cours et fiche d'exercices
Cours et fiche d'exercices
Comme déjà dit en classe, on dispose du théorème suivant dit de "D'Alembert-Gauss" (ou théorème fondamental de l'algèbre) et qui nous dit que "tout polynôme de degré au moins égal à 1 et à coefficients complexes, peut se factoriser en produit de polynômes de degrés 1 à coefficients complexes". En particulier, toute équation algébrique de degré n>=1 et à coefficients complexes possède n racines complexes (comptées avec multiplicité)
Carl Friedrich Gauss, mathématicien et Physicien allemand (1777-1855)
Jean-le-rond d'Alembert, mathématicien (1717-1783)
Rien qu'à lui seul ce théorème justifie l'utilisation des nombres complexes. Gauss le considérait d'ailleurs à ce point fondamental qu'il en donna plusieurs démonstration au cours de sa vie. C'est d'ailleurs lui qui en donna la première démonstration rigoureuse (dans sa thèse de doctorat). La preuve de d'Alembert était incomplète en ce sens qu'elle admettait qu'un polynôme à coefficients réels de degré impair admet au moins une racine réelle (d'Alembert ne disposait pas encore du théorème des valeurs intermédiaires).
C'est devenu d'ailleurs un jeu de donner des démonstrations différentes de ce théorème. Citons par exemple la preuve du mathématicien Joseph Liouville (devenue un classique).
Joseph Liouville (1809-1882), mathématicien
Liouville raisonne par l'absurde. Il suppose donc l'existence d'un polynôme P de degré au moins 1, à coefficients complexes qui ne s'annule pas sur C. Il considère alors la fonction f=1/P. Une telle fonction est holomorphe sur C (c'est à dire dérivable sur C) et il montre aussi qu'elle est bornée. Or un théorème de Liouville lui-même montre qu'une fonction holomorphe et bornée sur C est constante. Donc f, et donc P est constant: absurde. Pas mal n'est-ce pas ?
En fait, il y a même des démonstrations plus simples. Une des plus simples démonstration est la suivante. On se donne un polynôme P à coefficients complexes et de degré n>=1. On suppose qu'il ne s'annule pas sur C. On considère alors la fonction |P|, qui à z nombre complexe associe le module de P(z). On montre alors que cette fonction admet une valeur minimale |P(z0)|, puis que si elle est non nulle, alors on peut trouver un nombre complexe z1 tel que |P(z1)|<|P(z0)|, ce qui est absurde.
Une autre démonstration moins connue mais très élégante peut être obtenue par la théorie de Galois (la découverte de ces travaux doit d'ailleurs beaucoup à Liouville: voir lien; pour une introduction (hors programme) à ses travaux, voir lien )
Evariste Galois, mathématicien génial mort en duel à 20 ans (1811-1832)
Mais revenons à Gauss. Gauss est à l'origine de l'une des constructions modernes de l'ensemble des nombres complexes (il y en a d'autres). Il considère l'ensemble des nombres complexes comme l'ensemble des couples de nombres réels (a;b). Il munit cet ensemble des deux lois de composition interne suivante:
il définit sur C l'addition suivante (a;b)+(c;d)=(a+c;b+d) et la multiplication suivante: (a;b)x(c;d)=(ac-bd;ad+bc);
On vérifie alors que (C,+,X) est un "corps". On identifie aussi chaque nombre réel a au couple (a;0). Plus précisément, on considère la fonction f définie sur R à valeurs dans C, qui au nombre réel a, associe le couple (a;0). Une telle application constitue un isomorphisme de corps de R vers f(R). Ainsi C "contient" le corps des nombres réels (en ce sens qu'il contient f(R) isomorphe à R). Avec cette identification, on note le couple (a;0) plus simplement par a.
On pose aussi que i=(0;1). Alors, on a i²=ixi=(0;1)x(0;1)=(-1;0)= -1. De plus, soit z un nombre complexe. Il existe donc des nombres réels a et b tels que z=(a;b)=(a;0)+(0;b)=(a;0)+(0;1)(b;0)=a+ib avec l'identification précédente. Ainsi tout nombre complexe peut se mettre sous la forme z=a+ib, a, b réels. Il est facile de vérifier que cette écriture est unique. En effet, s'il existe d'autres nombres réels a' et b' tels que z=a'+ib', alors z=(a';b'), donc (a;b)=(a';b'), donc a=a' et b=b'.
Fiches d'exercices: (rappel sur la notion d'EC d'un cercle), un exercice sur la représentation des nombres complexes, un autre (corrigé).