TLR Signaling

http://www.jbc.org/content/278/40/38105.full

Toll-like Receptor Signaling*

Author Affiliations

The innate immune response in vertebrates is the first line of defense against invading microorganisms. The main players in innate immunity are phagocytes such as neutrophils, macrophages, and dendritic cells. These cells can discriminate between pathogens and self by utilizing signals from the Toll-like receptors (TLRs)1 (14). TLRs recognize conserved motifs predominantly found in microorganisms but not in vertebrates. Stimulation of TLRs causes an immediate defensive response, including the production of an array of antimicrobial peptides and cytokines. Accumulating evidence has shown that individual TLRs can activate overlapping as well as distinct signaling pathways, ultimately giving rise to distinct biological effects. Here, I will review our current understanding of the TLR signaling pathways.

Toll-like Receptors: Structure and Ligands

Toll was initially identified in insects as a receptor essential for dorsoventral polarity during embryogenesis. Subsequent studies revealed that it also plays an essential role in insects in the innate immune response against fungal infection (5). Mammalian homologues of Toll were subsequently identified through expressed sequence tag and genomic sequence data base searches. To date, 10 members of the TLR family have been identified in mammals. TLRs are members of a larger superfamily of interleukin-1 receptors (IL-1Rs) that share significant homology in their cytoplasmic regions. In particular, TLRs and members of the IL-1R family share a conserved stretch of ∼200 amino acids in their cytoplasmic region known as the Toll/IL-1R (TIR) domain. The region of homology in the TIR motif is confined to three conserved boxes that contain amino acids crucial for signaling. In contrast, the extracellular regions are quite diverse. The extracellular portion of the TLRs contains a leucine-rich repeat (LRR) motif whereas that of the IL-1Rs contains three immunoglobulin domains. The LRR domains consist of varying numbers of repeats, each 24–29 amino acids in length, containing the motif XXLXLXX and other conserved leucines. It is thought that these LRR domains are directly involved in the recognition of a variety of pathogens. The major ligands recognized by individual TLRs are summarized in Fig. 1.

FIG. 1.

Summary of ligands recognized by TLR family.ds, double-stranded.

Signaling Molecules Involved in TLR Signaling

The IL-1R and TLR family signal via shared downstream signaling molecules (6). They include the adaptor molecule MyD88, IL-1RI-associated protein kinases (IRAKs), the transforming growth factor (TGF)-β-activated kinase (TAK1), TAK1-binding protein 1 (TAB1) and 2 (TAB2), and the tumor necrosis factor receptor-associated factor 6 (TRAF6). The generally accepted scenario of the IL-1/TLR signaling pathway is shown in Fig. 2.

FIG. 2.

IL-1R/TLR signaling pathways.

Triggering of the IL-1R or TLR causes the adaptor protein MyD88 to be recruited to the receptor complex, which in turn promotes association with the IL-1R-associated kinases IRAK4 and IRAK1. During the formation of this complex, IRAK4 is activated, leading to the hyperphosphorylation of IRAK-1, which then induces the interaction of TRAF6 with the complex. The association of IRAK-4·IRAK-1·TRAF6 causes some conformational change in one or more of these factors, leading to their disengagement from the receptor complex. The IRAK-4·IRAK-1·TRAF6 complex then interacts at the membrane with another preformed complex consisting of TAK1, TAB1, and TAB2. This interaction induces phosphorylation of TAB2 and TAK1, which then translocate together with TRAF6 and TAB1 to the cytosol. TAK1 is subsequently activated in the cytoplasm, leading to the activation of IKK. Inactive IKK sequesters NF-κB in the cytoplasm, but activation leads to phosphorylation and degradation of IκB and consequent release of NF-κB. Activation of TAK1 also results in the activation of MAP kinases and c-Jun NH2-terminal kinase (JNK). I will discuss these molecules and their interactions in more detail below.

MyD88 —MyD88 was originally isolated as a myeloid differentiation primary response gene that is rapidly induced upon IL-6-stimulated differentiation of M1 myeloleukemic cells into macrophages (7). MyD88 consists of an N-terminal death domain (DD) separated from its C-terminal TIR domain by a short linker sequence. MyD88 was subsequently cloned as an adapter molecule that functions to recruit IRAK to the IL-1 receptor complex following IL-1 stimulation (8, 9). The association between MyD88 and IRAK is mediated through a DD-DD interaction. MyD88 also forms homodimers through DD-DD and TIR-TIR domain interactions and exists as a dimer when recruited to the receptor complex. When the C-terminal TIR domain of MyD88 is expressed by itself, it acts as a dominant-negative inhibitor of TLR4 and IL-1R signaling by preventing IRAK association with the receptors. Thus, MyD88 functions as an adapter linking IL-1R/TLRs with downstream signaling molecules harboring DD.

IRAK Family—Four different IRAKs (IRAK-1, IRAK-2, IRAK-M, and IRAK-4) have been identified in mammals (914). The expression patterns of these members differ; IRAK-1 and IRAK-4 are expressed in all tissues, IRAK-2 has a narrower cellular distribution, and IRAK-M expression is mainly restricted to cells of a myeloid origin. All IRAKs contain an N-terminal DD and a central Ser/Thr kinase domain (KD). Although the kinase activity of IRAK-1 increases strongly following IL-1 stimulation, IRAK-1 kinase activity is not required for its signaling function, because overexpression of a kinase-defective mutant of IRAK-1 is observed to strongly induce NF-κB activation in cells otherwise deficient for IRAK-1. Upon stimulation, IRAK-1 is recruited to the receptor through a homophilic interaction with the DD of MyD88. MyD88 also binds to IRAK-4 and thereby facilitates IRAK-4 phosphorylation of critical residue(s) in the kinase activation loop of IRAK-1, triggering IRAK-1's own kinase activity. Once activated, IRAK-1 likely autophosphorylates residues in its N terminus. TRAF6 is also recruited to the receptor complex via interaction with IRAK-1. Three TRAF6 binding motifs (Pro-X-Glu-X-X-aromatic/acidic residue) are found in IRAK-1, as well as one in IRAK-M and two in IRAK-2 (15). However, in contrast to IRAK-1 and IRAK-4, IRAK-2 and IRAK-M do not possess any detectable kinase activity. This is presumably because they have an asparagine and serine residue, respectively, in their kinase domains in place of an aspartate residue shown to be critical for the kinase activity of other IRAKs. IRAK-1-deficient mice and cell lines showed diminished cytokine production in response to IL-1 and LPS; nevertheless some response remained, suggesting that IRAK-2 or IRAK-M might compensate to some extent for the lack of IRAK-1 (16, 17). IRAK-4-deficient mice have been generated and showed almost complete unresponsiveness to IL-1, LPS, or other bacterial components, demonstrating that IRAK-4 is a key player in the IL-1R/TLR signaling (14). Recently, patients with inherited IRAK-4 deficiency have been identified. These patients failed to respond to IL-1, IL-18, or the stimulation of at least five TLRs (TLR2, TLR3, TLR4, TLR5, TLR9) (18). Data with IRAK-M knock-out mice have revealed that IRAK-M serves as a negative regulator of IL-1R/TLR signaling (19). IRAK-M-deficient macrophages produced significantly higher cytokine levels in response to a variety of IL-1R/TLR ligands. Furthermore, IRAK-M-deficient macrophages did not become hyporesponsive following repeated exposure to LPS, suggesting that IRAK-M plays an essential role in endotoxin tolerance.

TRAF6 —TRAFs constitute a family of evolutionarily conserved adaptor proteins. To date, six members of the TRAF family have been identified in mammals (20). The TRAF proteins are characterized by the presence of a coiled-coil TRAF-N domain and a conserved C-terminal TRAF domain. The TRAF-C domain mediates self-association and interactions with upstream receptors and signaling proteins. The N-terminal portion of most TRAF proteins also contains a RING finger/zinc finger region essential for downstream signaling events. TRAF6 acts as the signaling mediator for both the TNF receptor superfamily and the IL-1R/TLR superfamily. TRAF6 directly interacts with CD40 and TRANCE-R, which are members of the TNF receptor superfamily. TRAF6 is indirectly coupled to IL-1/TlR receptor activation and is recruited into the signaling complex via its association with IRAK (21, 22).

TRAF6 Downstream Signaling Pathway—The activation of both NF-κB and AP-1 by TRAF6 involves a MAP 3-kinase known as TAK1 and two adaptor proteins, TAB1 and TAB2. TAK1 is a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family (23). Studies using small interfering RNA (siRNA) to inhibit TAK1 expression show that TAK1 is essential for both IL-1- and TNF-α-induced NF-κB activation. Two TAK1-binding proteins, TAB1 and TAB2, have been identified (24, 25). When ectopically co-expressed, TAB1 augments the kinase activity of TAK1, indicating that TAB1 functions as an activator of TAK1. TAB2 is associated with the cell membrane in unstimulated conditions, but upon stimulation it translocates to the cytosol, where it functions as an adaptor linking TAK1 to TRAF6, thereby facilitating TAK1 activation. It has been shown recently that ubiquitination plays an important role in TAK1 activation (26, 27). IKK activation by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex composed of Ubc13 and Uev1A as well as the TAK1·kinase complex. TRAF6 can interact through its RING finger domain with Ubc13 in the Ubc13·Uev1A complex. This Ubc·TRAF6 complex catalyzes the formation of a Lys-63-linked polyubiquitin chain, which triggers TAK1 activation through a unique proteasome-independent mechanism.

Tollip—Tollip (Toll-interacting protein) was originally cloned as a protein interacting with the IL-1 receptor accessory protein (28). Tollip also associates with TLR2 and TLR4. In resting cells, Tollip forms a complex with members of the IRAK family, thereby preventing NF-κB activation. Upon activation Tollip·IRAK-1 complexes are recruited to the cognate receptor, resulting in the rapid autophosphorylation of IRAK-1 and its dissociation from the receptor. At the same time, IRAK phosphorylates Tollip, which may lead to the dissociation of Tollip from IRAK-1 and its rapid ubiquitination and degradation. Tollip is believed to function primarily to maintain immune cells in a quiescent state and to facilitate the termination of IL-1R/TLR-induced cell signaling during inflammation and infection (29).

Pellino—Pellino is a Drosophila protein that was cloned through a yeast two-hybrid screen against Pelle. Pellino is highly conserved among different species. At least two members of the Pellino family have been identified in mammals. Human Pellino 1 and its homolog from Caenorhabditis elegans share 44% amino acid identity and 53% similarity. Mouse Pellino 1 and Pellino 2 share 75% similarity. Studies using siRNA to inhibit Pellino 1 expression have shown that Pellino 1 is required for IL-1-induced NF-κB activation and IL-8 gene expression (30). Pellino 2 has also been shown to be involved in IL-1R/TLR signaling pathways (31). Following IL-1 stimulation, IRAK-1 and Pellino 2 associate to form complexes. Ectopic expression of a Pellino 2 antisense construct was shown to inhibit IL-1- and LPS-dependent but not TNF-α-dependent activation of the IL-8 promoter. Pellino 1 and 2 are presumed to play a role in facilitating the release of phosphorylated IRAK from the receptor.

Phosphatidylinositol (PI) 3-Kinase—PI 3-kinases are activated in IL-1R/TLR signaling. The activation of PI 3-kinase occurs through an interaction of the Src homology (SH)-2 domain of the PI 3-kinase p85 subunit with a domain in the partner cell surface receptor containing the motif YXXM. Interestingly, this PI 3-kinase binding motif is present only in a subset of TLRs, i.e. in TLRs 1, 2, and 6 but not in TLRs 3, 4, or 5. TLR2 has been shown to bind directly to the regulatory p85 subunit of the PI 3-kinase (32). A putative PI 3-kinase binding site (amino acids 257–260, YKAM) is also found in the C terminus of MyD88. LPS stimulation has been shown to result in tyrosine phosphorylation of MyD88 and formation of a PI 3-kinase·MyD88 complex (33). However, the role of PI 3-kinase activation in TLR signaling remains to be elucidated.

Role of MyD88 in Response to Microbial Components

MyD88-deficient mice have been generated and found to be completely defective in their responses to IL-1 and the IL-1-related cytokine, IL-18 (34). The response to LPS was shown to also be abolished (35). Furthermore, MyD88-deficient macrophages were shown to be completely unresponsive to other immunostimulatory components including peptidoglycan, lipoproteins, CpG DNA, flagellin, and imidazoquinolines, demonstrating the essential role of MyD88 in the response to all TLR responses (3640). Although MyD88 is reported to be involved in TLR3 signaling (41), TLR3 does not appear to use the MyD88-dependent pathway to any significant extent, because the response to poly(I-C) was not impaired in MyD88-deficient mice.2 TLR3 is unique among the TLRs in that it lacks a highly conserved proline residue in its cytoplasmic portion, which in other TLRs has been shown to be essential for signaling. There is an alanine residue in this position in TLR3, conserved between human and mouse TLR3. It is noteworthy that, compared with other TLR ligands, poly(I-C) stimulation induces the production of relatively large amounts of type I interferons and interferon-inducible genes but smaller amounts of inflammatory cytokines such as TNF-α and IL-6, further suggesting that TLR3 does not utilize the MyD88-dependent pathway for signaling.

MyD88-dependent and -independent Pathways in TLR Signaling

Although MyD88 plays a critical role in TLR signaling, there is a difference in the signaling pathways triggered by LPS and by other bacterial components. Activation of NF-κB and MAP kinases by mycoplasmal lipopeptide is completely abolished in TLR2- or MyD88-deficient macrophages. However, LPS activation of MAP kinases and NF-κB remains intact in MyD88-deficient macrophages, although it is delayed compared with that in wild-type mice. This indicates that the TLR4-mediated response to LPS may involve both MyD88-dependent and -independent pathways, each of which leads to the activation of MAP kinases and NF-κB. Subtractive hybridization studies showed that interferon-inducible genes including IP-10, a CXC chemokine, are induced in MyD88-deficient macrophages in response to LPS. Subsequent studies have revealed that the MyD88-independent pathway activates the transcription factor IRF-3 (42). Following virus infection, double-stranded RNA, or LPS treatment, IRF-3 undergoes phosphorylation and translocates from the cytoplasm to the nucleus, resulting in the transcriptional activation of type I interferons. Analyses with IFN-α/β receptor-deficient mice and STAT1-deficient mice showed that IP-10 induction in response to LPS is secondary to IFN-β induction (4345).

Identification of Other Adaptor Molecules Involved in TLR Signaling

Another TIR domain-containing protein (TIRAP, also named Mal) was identified by data base searches (46, 47). TIRAP was shown to associate with TLR-4 but not with other TLRs. Overexpression of a dominant-negative form of TIRAP was shown to inhibit LPS-induced NF-κB activation and dendritic cell maturation. Blockage of TIRAP using a cell-permeable inhibitory peptide also prevented induction of IP-10 by LPS. Thus it was initially expected that TIRAP/Mal might participate in the MyD88-independent pathway. However, studies with TIRAP-deficient mice subsequently revealed that TIRAP/Mal is not involved in the MyD88-independent pathway and that it acts as an adaptor in the MyD88-dependent signaling pathways downstream of TLR2 and TLR4 (48, 49). Recently another adaptor molecule named TRIF or TICAM-1 has been identified (50, 51). Overexpression of TRIF, but not MyD88 or TIRAP, preferentially activates the IFN-β promoter. A dominant-negative form (DN) of TRIF, but not MyD88DN or TIRAPDN, blocked the TLR3-mediated response to poly(I-C), indicating the specific role of TRIF in TLR3 signaling. TRIFDN also was observed to block signaling pathways activated by other TLR family members, which indicates a role for TRIF in the MyD88-dependent signaling pathway. A recent generation of TRIF-deficient mice showed the essential role of TRIF in the MyD88-independent pathways of TLR3 and TLR4 signaling (52). Interestingly, TRIF-deficient mice abolished the response to LPS in terms of cytokine production that was considered to be mediated by the MyD88-dependent pathway.

TLR3 signaling depends mainly on the MyD88-independent pathway because poly(I-C) induces activation of NF-κB and MAP kinases in MyD88-deficient macrophages almost to the same extent as in wild-type macrophages.2Expression of a dominant-negative form of MyD88 or Mal/TIRAP does not abolish the TLR3-mediated response to poly(I-C). To date, no interaction between MyD88 or Mal and TLR3 upon poly(I-C) stimulation has been observed. Recently, a paper reported that TLR3-mediated activation of NF-κB and MAP kinases involves an IRAK-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR (53). Thus, TRIF is a likely candidate adaptor to recruit the TRAF6·TAK-1·TAB2 complex to TLR3. In fact, TRIF harbors three TRAF6 binding motifs in its C terminus. A data base search of TIR domain-containing adaptors has revealed two additional adaptor molecules.2 These findings suggest that several different TIR-containing adaptor molecules are involved in TLR-mediated signaling and that their differential utilization may be the basis for specificity of the responses to different TLRs (Fig. 3).

FIG. 3.

Involvement of adaptors in the TLR signaling. MyD88 is essential for inflammatory cytokine production in response to all TLR ligands, except for the TLR3 ligand. TIRAP/Mal is essential for TLR2- and TLR4-dependent inflammatory cytokine production but is not involved in the MyD88-independent TLR4 signaling pathway. TRIF is essential for TLR3 signaling as well as the MyD88-independent TLR4 signaling pathway. Other adaptor(s) may be involved in interferon induction via other TLRs such as TLR7 and TLR9.

Concluding Remarks

Although the signaling pathways acting downstream of the different TLRs were initially thought to be identical, it is now apparent that individual TLRs activate different sets of signaling pathways and exert distinct biological effects. This diversity of signaling is most likely the result of the combinatorial action of adaptor molecules. Of course we must await the generation of mice lacking these adaptor molecules to verify this speculation. A complete understanding of the signaling pathways elicited by each TLR has great promise in aiding the design of effective therapies against infectious diseases, septic shock, cancer, and autoimmune diseases.

Acknowledgments

We thank all members in our laboratory for helpful discussions and suggestions, and E. Horita for excellent secretarial assistance.

Footnotes

  • Department of Host Defense, Research Institute for Microbial Diseases, Osaka University and ERATO of Japan Science and Technology Corporation, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan

    • 1 The abbreviations used are: TLR, Toll-like receptor; IL, interleukin; IL-1R, interleukin-1 receptor; TIR, Toll/IL-1R; LRR, leucine-rich repeat; IRAK, IL-1RI-associated protein kinase; TAK, transforming growth factor (TGF)-β-activated kinase; TAB1, TAK1-binding protein 1; TNF, tumor necrosis factor; TRAF, TNF receptor-associated factor; IKK, IκB kinase kinase; MAP, mitogen-activated protein; DD, death domain; LPS, lipopolysaccharide; siRNA, small interfering RNA; PI, phosphatidylinositol; IFN, interferon; DN, dominant-negative form.

    • 2 S. Akira, unpublished data.

    • * This minireview will be reprinted in the 2003 Minireview Compendium, which will be available in January, 2004. This work was supported by grants from the Naito Foundation, the Uehara Memorial Foundation, and the Ministry of Education, Culture, Sports, Science, and Technology in Japan.

    • The American Society for Biochemistry and Molecular Biology, Inc.

References

  1. Akira, S., Takeda, K., and Kaisho, T. (2001) Nat. Immunol. 2, 675–680CrossRefMedlineWeb of Science

    1. Aderem, A., and Ulevitch, R. J. (2000) Nature 406, 782–787 CrossRefMedline

    2. Janeway, C. A., Jr., and Medzhitov, R. (2002) Annu. Rev. Immunol. 20, 197–216 CrossRefMedlineWeb of Science

  2. Akira, S. (2003) Curr. Opin. Immunol. 15, 5–11 CrossRefMedlineWeb of Science

  3. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M., and Hoffmann, J. A. (1996) Cell 86, 973–983 CrossRefMedlineWeb of Science

  4. O'Neill, L. A. (2002) Curr. Top. Microbiol. Immunol. 270, 47–61 MedlineWeb of Science

  5. Lord, K. A., Hoffman-Liebermann, B., and Liebermann, D. A. (1990)Oncogene 5, 1095–1097 MedlineWeb of Science

  6. Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S., and Cao, Z. (1997)Immunity 7, 837–847 CrossRefMedlineWeb of Science

  7. Muzio, M., Ni, J., Feng, P., and Dixit, V. M. (1997) Science 278, 1612–1615 Abstract/FREE Full Text

    1. Janssens, S., and Beyaert, R. (2003) Mol. Cell 11, 293–302 CrossRefMedlineWeb of Science

    2. Cao, Z., Henzel, W. J., and Gao, X. (1996) Science 271, 1128–1131 Abstract

    3. Wesche, H., Gao, X., Li, X., Kirschning, C. J., Stark, G. R., and Cao, Z. (1999) J.Biol. Chem. 274, 19403–19410 Abstract/FREE Full Text

    4. Li, S., Strelow, A., Fontana, E. J., and Wesche, H. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 5567–5572 Abstract/FREE Full Text

  1. Suzuki, N., Suzuki, S., Duncan, G. S., Millar, D. G., Wada, T., Mirtsos, C., Takada, H., Wakeham, A., Itie, A., Li, S., Penninger, J. M., Wesche, H., Ohashi, P. S., Mak, T. W., and Yeh, W. C. (2002) Nature 416, 750–756 CrossRefMedline

  2. Ye, H., Arron, J. R., Lamothe, B., Cirilli, M., Kobayashi, T., Shevde, N. K., Segal, D., Dzivenu, O. K., Vologodskaia, M., Yim, M., Du, K., Singh, S., Pike, J. W., Darnay, B. G., Choi, Y., and Wu, H. (2002) Nature 418, 443–447CrossRefMedline

  3. Kanakaraj, P., Schafer, P. H., Cavender, D. E., Wu, Y., Ngo, K., Grealish, P. F., Wadsworth, S. A., Peterson, P. A., Siekierka, J. J., Harris, C. A., and Fung-Leung, W. P. (1998) J. Exp. Med. 187, 2073–2079 Abstract/FREE Full Text

  4. Thomas, J. A., Allen, J. L., Tsen, M., Dubnicoff, T., Danao, J., Liao, X. C., Cao, Z., and Wasserman, S. A. (1999) J. Immunol. 163, 978–984Abstract/FREE Full Text

  5. Picard, C., Puel, A., Bonnet, M., Ku, C. L., Bustamante, J., Yang, K., Soudais, C., Dupuis, S., Feinberg, J., Fieschi, C., Elbim, C., Hitchcock, R., Lammas, D., Davies, G., Al-Ghonaium, A., Al-Rayes, H., Al-Jumaah, S., Al-Hajjar, S., Al-Mohsen, I. Z., Frayha, H. H., Rucker, R., Hawn, T. R., Aderem, A., Tufenkeji, H., Haraguchi, S., Day, N. K., Good, R. A., Gougerot-Pocidalo, M. A., Ozinsky, A., and Casanova, J. L. (2003) Science 299, 2076–2079Abstract/FREE Full Text

  6. Kobayashi, K., Hernandez, L. D., Galan, J. E., Janeway, C. A., Jr., Medzhitov, R., and Flavell, R. A. (2002) Cell 110, 191–202 CrossRefMedlineWeb of Science

  7. Chung, J. Y., Park, Y. C., Ye, H., and Wu, H. (2002) J. Cell Sci. 115, 679–688 Abstract/FREE Full Text

  8. Ishida, T., Mizushima, S., Azuma, S., Kobayashi, N., Tojo, T., Suzuki, K., Aizawa, S., Watanabe, T., Mosialos, G., Kieff, E., Yamamoto, T., and Inoue, J. (1996) J. Biol. Chem. 271, 28745–28748 Abstract/FREE Full Text

  9. Cao, Z., Xiong, J., Takeuchi, M., Kurama, T., and Goeddel, D. V. (1996)Nature 383, 443–446 CrossRefMedline

  10. Yamaguchi, K., Shirakabe, K., Shibuya, H., Irie, K., Oishi, I., Ueno, N., Taniguchi, T., Nishida, E., and Matsumoto, K. (1995) Science 270, 2008–2011 Abstract/FREE Full Text

  11. Takaesu, G., Kishida, S., Hiyama, A., Yamaguchi, K., Shibuya, H., Irie, K., Ninomiya-Tsuji, J., and Matsumoto, K. (2000) Mol. Cell 5, 649–658CrossRefMedlineWeb of Science

  12. Jing, Z., Ninomiya-Tsuji, J., Qian, Y., Matsumoto, K., and Li, X. (2002) Mol. Cell. Biol. 22, 7158–7167 Abstract/FREE Full Text

  13. Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., Slaughter, C., Pickart, C., and Chen, Z. J. (2000) Cell 103, 351–361 CrossRefMedlineWeb of Science

  14. Wang, C., Deng, L., Hong, M., Akkaraju, G. R., Inoue, J. I., and Chen, Z. J. (2001) Nature 412, 346–351 CrossRefMedline

  15. Burns, K., Clatworthy, J., Martin, L., Martinon, F., Plumpton, C., Maschera, B., Lewis, A., Ray, K., Tschopp, J., and Volpe, F. (2000) Nat. Cell Biol. 2, 346–351 CrossRefMedlineWeb of Science

  16. Zhang, G., and Ghosh, S. (2002) J. Biol. Chem. 277, 7059–7065Abstract/FREE Full Text

  17. Jiang, Z., Johnson, H. J., Nie, H., Qin, J., Bird, T.A., and Li, X. (2003) J. Biol. Chem. 278, 10952–10956 Abstract/FREE Full Text

  18. Yu, K. Y., Kwon, H. J., Norman, D. A., Vig, E., Goebl, M. G., and Harrington, M. A. (2002) J. Immunol. 169, 4075–4078 Abstract/FREE Full Text

  19. Arbibe, L., Mira, J. P., Teusch, N., Kline, L., Guha, M., Mackman, N., Godowski, P. J., Ulevitch, R. J., and Knaus, U. G. (2000) Nat. Immunol. 1,533–540 CrossRefMedlineWeb of Science

  20. Ojaniemi, M., Glumoff, V., Harju, K., Liljeroos, M., Vuori, K., and Hallman, M. (2003) Eur. J. Immunol. 33, 597–605 CrossRefMedlineWeb of Science

  21. Adachi, O., Kawai, T., Takeda, K., Matsumoto, M., Tsutsui, H., Sakagami, M., Nakanishi, K., and Akira, S. (1998) Immunity 9, 143–150 CrossRefMedlineWeb of Science

  22. Kawai, T., Adachi, O., Ogawa, T., Takeda, K., and Akira, S. (1999)Immunity 11, 115–122 CrossRefMedlineWeb of Science

  23. Takeuchi, O., Takeda, K., Hoshino, K., Adachi, O., Ogawa, T., and Akira, S. (2000) Int. Immunol. 12, 113–117 Abstract/FREE Full Text

    1. Takeuchi, O., Kaufmann, A., Grote, K., Kawai, T., Hoshino, K., Morr, M., Muhlradt, P. F., and Akira, S. (2000) J. Immunol. 164, 554–557Abstract/FREE Full Text

    2. Hacker, H., Vabulas, R. M., Takeuchi, O., Hoshino, K., Akira, S., and Wagner, H. (2000) J. Exp. Med. 192, 595–600 Abstract/FREE Full Text

    3. Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Yi, E. C., Goodlett, D. R., Eng, J. K., Akira, S., Underhill, D. M., and Aderem, A. (2001) Nature 410,1099–1103 CrossRefMedline

  1. Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K., and Akira, S. (2002) Nat. Immunol. 3,196–200 CrossRefMedlineWeb of Science

  2. Alexopoulou, L., Holt, A. C., Medzhitov, R., and Flavell, R. A. (2001)Nature 413, 732–738 CrossRefMedline

  3. Kawai, T., Takeuchi, O., Fujita, T., Inoue, J., Muhlradt, P. F., Sato, S., Hoshino, K., and Akira, S. (2001) J. Immunol. 167, 5887–5894Abstract/FREE Full Text

  4. Toshchakov, V., Jones, B. W., Perera, P. Y., Thomas, K., Cody, M. J., Zhang, S., Williams, B. R., Major, J., Hamilton, T. A., Fenton, M. J., and Vogel, S. N. (2002) Nat. Immunol. 3, 392–398 CrossRefMedlineWeb of Science

    1. Doyle, S. E, Vaidya, S. A., O'Connell, R., Dadgostar, H., Dempsey, R. W., Wu, T. T., Rao, G., Sun, R., Haberland, M. E., Modlin, R. L., and Cheng, G. (2002)Immunity 17, 251–263 CrossRefMedlineWeb of Science

  1. Hoshino, K., Kaisho, T., Iwabe, T., Takeuchi, O., and Akira, S. (2002) Int. Immunol. 14, 1225–1231 Abstract/FREE Full Text

  2. Horng, T., Barton, G. M., and Medzhitov, R. (2001) Nat. Immunol. 2, 835–841 CrossRefMedlineWeb of Science

  3. Fitzgerald, K. A., Palsson-McDermott, E. M., Bowie, A. G., Jefferies, C. A., Mansell, A. S., Brady, G., Brint, E., Dunne, A., Gray, P., Harte, M. T., McMurray, D., Smith, D. E., Sims, J. E., Bird, T. A., and O'Neill, L. A. (2001) Nature 413,78–83 CrossRefMedline

  4. Yamamoto, M., Sato, S., Hemmi, H., Sanjo, H., Uematsu, S., Kaisho, T., Hoshino, K., Takeuchi, O., Kobayashi, M., Fujita, T., Takeda, K., and Akira, S. (2002) Nature 420, 324–329 CrossRefMedline

  5. Horng, T., Barton, G. M., Flavell, R. A., and Medzhitov, R. (2002) Nature420, 329–333 CrossRefMedline

  6. Yamamoto, M., Sato, S., Mori, K., Takeuchi, O., Hoshino, K., Takeda, K., and Akira, S. (2002) J. Immunol. 169, 6668–6672 Abstract/FREE Full Text

  7. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T., and Seya, T. (2003)Nat. Immunol. 4, 161–167 CrossRefMedlineWeb of Science

  8. Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K., and Akira, S. (2003)Science 301, 640–643 Abstract/FREE Full Text

  9. Jiang, Z., Zamanian-Daryoush, M., Nie, H., Silva, A. M., Williams, B. R., and Li, X. (2003) J. Biol. Chem. 278, 16713–16719 Abstract/FREE Full Text

What's this?

Articles citing this article

      • A. E. Morris, H. D. Liggitt, T. R. Hawn, and S. J. Skerrett

      • Role of Toll-like receptor 5 in the innate immune response to acute P. aeruginosa pneumonia

      • Am. J. Physiol. Lung Cell. Mol. Physiol. 2009 297: L1112-L1119.

      • AbstractFull TextFull Text (PDF)

      • E. Israeli, N. Agmon-Levin, M. Blank, and Y. Shoenfeld

      • Adjuvants and autoimmunity

      • Lupus 2009 18: 1217-1225.

      • AbstractFull Text (PDF)

      • P. A. Ortiz

      • Toll-like receptor 4 (TLR-4) regulates renal ion transport

      • Am. J. Physiol. Renal Physiol. 2009 297: F864-F865.

      • Full TextFull Text (PDF)

      • L. J. Manzel, C. L. Chin, M. A. Behlke, and D. C. Look

      • Regulation of Bacteria-Induced Intercellular Adhesion Molecule-1 by CCAAT/Enhancer Binding Proteins

      • Am. J. Respir. Cell Mol. Bio. 2009 40: 200-210.

      • AbstractFull TextFull Text (PDF)

      • M. Milanski, G. Degasperi, A. Coope, J. Morari, R. Denis, D. E. Cintra, D. M. L. Tsukumo, G. Anhe, M. E. Amaral, H. K. Takahashi, R. Curi, H. C. Oliveira, J. B. C. Carvalheira, S. Bordin, M. J. Saad, and L. A. Velloso

      • Saturated Fatty Acids Produce an Inflammatory Response Predominantly through the Activation of TLR4 Signaling in Hypothalamus: Implications for the Pathogenesis of Obesity

      • J. Neurosci. 2009 29: 359-370.

      • AbstractFull TextFull Text (PDF)

      • J. G. Magalhaes, J. H. Fritz, L. Le Bourhis, G. Sellge, L. H. Travassos, T. Selvanantham, S. E. Girardin, J. L. Gommerman, and D. J. Philpott

      • Nod2-Dependent Th2 Polarization of Antigen-Specific Immunity

      • J. Immunol. 2008 181: 7925-7935.

      • AbstractFull TextFull Text (PDF)

      • E Cockrell, R. Espinola, and K. McCrae

      • Annexin A2: biology and relevance to the antiphospholipid syndrome

      • Lupus 2008 17: 944-952.

      • AbstractFull Text (PDF)

      • B. K. Pedersen andM. A. Febbraio

      • Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6

      • Physiol. Rev. 2008 88: 1379-1406.

      • AbstractFull TextFull Text (PDF)

      • A. C. Shirali andD. R. Goldstein

      • Tracking the Toll of Kidney Disease

      • J. Am. Soc. Nephrol. 2008 19: 1444-1450.

      • AbstractFull TextFull Text (PDF)

      • A. Nishiyama, T. Shinohara, T. Pantuso, S. Tsuji, M. Yamashita, S. Shinohara, Q. N. Myrvik, R. A. Henriksen, and Y. Shibata

      • Depletion of cellular cholesterol enhances macrophage MAPK activation by chitin microparticles but not by heat-killed Mycobacterium bovis BCG

      • Am. J. Physiol. Cell Physiol. 2008 295: C341-C349.

      • AbstractFull TextFull Text (PDF)

      • M. H. Kogut, K. J. Genovese, Haiqi He, and P. Kaiser

      • Flagellin and lipopolysaccharide up-regulation of IL-6 and CXCLi2 gene expression in chicken heterophils is mediated by ERK1/2-dependent activation of AP-1 and NF-{kappa}B signaling pathways

      • Innate Immunity 2008 14: 213-222.

      • AbstractFull Text (PDF)

      • M. Abe, M. Matsuda, H. Kobayashi, Y. Miyata, Y. Nakayama, R. Komuro, A. Fukuhara, and I. Shimomura

      • Effects of Statins on Adipose Tissue Inflammation: Their Inhibitory Effect on MyD88-Independent IRF3/IFN-{beta} Pathway in Macrophages

      • Arterioscler. Thromb. Vasc. Bio. 2008 28: 871-877.

      • AbstractFull TextFull Text (PDF)

      • J. Dagvadorj, Y. Naiki, G. Tumurkhuu, F. Hassan, S. Islam, N. Koide, I. Mori, T. Yoshida, and T. Yokochi

      • Interleukin-10 inhibits tumor necrosis factor-{alpha} production in lipopolysaccharide-stimulated RAW 264.7 cells through reduced MyD88 expression

      • Innate Immunity 2008 14: 109-115.

      • AbstractFull Text (PDF)

      • W. Shen, K. Stone, A. Jales, D. Leitenberg, and S. Ladisch

      • Inhibition of TLR Activation and Up-Regulation of IL-1R-Associated Kinase-M Expression by Exogenous Gangliosides

      • J. Immunol. 2008 180: 4425-4432.

      • AbstractFull TextFull Text (PDF)

      • M. Kubo-Murai, K. Hazeki, K. Nigorikawa, T. Omoto, N. Inoue, and O. Hazeki

      • IRAK-4-dependent Degradation of IRAK-1 is a Negative Feedback Signal for TLR-mediated NF-{kappa}B Activation

      • J Biochem 2008 143: 295-302.

      • AbstractFull TextFull Text (PDF)

      • K. Tsukamoto, K. Hazeki, M. Hoshi, K. Nigorikawa, N. Inoue, T. Sasaki,and O. Hazeki

      • Critical Roles of the p110{beta} Subtype of Phosphoinositide 3-Kinase in Lipopolysaccharide-Induced Akt Activation and Negative Regulation of Nitrite Production in RAW 264.7 Cells

      • J. Immunol. 2008 180: 2054-2061.

      • AbstractFull TextFull Text (PDF)

      • D. Aki, Y. Minoda, H. Yoshida, S. Watanabe, R. Yoshida, G. Takaesu, T. Chinen, T. Inaba, M. Hikida, T. Kurosaki, K. Saeki, and A. Yoshimura

      • Peptidoglycan and lipopolysaccharide activate PLCgamma2, leading to enhanced cytokine production in macrophages and dendritic cells.

      • GENES CELLS 2008 13: 199-208.

      • AbstractFull TextFull Text (PDF)

      • K. Abe, K. P. Nguyen, S. D. Fine, J.-H. Mo, C. Shen, S. Shenouda, M. Corr,S. Jung, J. Lee, L. Eckmann, and E. Raz

      • Conventional dendritic cells regulate the outcome of colonic inflammation independently of T cells

      • Proc. Natl. Acad. Sci. USA 2007 104: 17022-17027.

      • AbstractFull TextFull Text (PDF)

      • C. Hoarau, B. Gerard, E. Lescanne, D. Henry, S. Francois, J.-J. Lacapere, J. El Benna, P. M.-C. Dang, B. Grandchamp, Y. Lebranchu, M.-A. Gougerot-Pocidalo, and C. Elbim

      • TLR9 Activation Induces Normal Neutrophil Responses in a Child with IRAK-4 Deficiency: Involvement of the Direct PI3K Pathway

      • J. Immunol. 2007 179: 4754-4765.

      • AbstractFull TextFull Text (PDF)

      • Shuang Chen, M. H. Wong, D. J. Schulte, M. Arditi, and K. S. Michelsen

      • Differential expression of Toll-like receptor 2 (TLR2) and responses to TLR2 ligands between human and murine vascular endothelial cells

      • Innate Immunity 2007 13: 281-296.

      • AbstractFull Text (PDF)

      • G. Liu, Y. Tsuruta, Z. Gao, Y.-J. Park, and E. Abraham

      • Variant IL-1 Receptor-Associated Kinase-1 Mediates Increased NF-{kappa}B Activity

      • J. Immunol. 2007 179: 4125-4134.

      • AbstractFull TextFull Text (PDF)

      • S. Naithani, T. Chookajorn, D. R. Ripoll, and J. B. Nasrallah

      • Structural modules for receptor dimerization in the S-locus receptor kinase extracellular domain

      • Proc. Natl. Acad. Sci. USA 2007 104: 12211-12216.

      • AbstractFull TextFull Text (PDF)

      • X. Z. Shen, P. Li, D. Weiss, S. Fuchs, H. D. Xiao, J. A. Adams, I. R. Williams,M. R. Capecchi, W. R. Taylor, and K. E. Bernstein

      • Mice with Enhanced Macrophage Angiotensin-Converting Enzyme Are Resistant to Melanoma

      • Am. J. Pathol. 2007 170: 2122-2134.

      • AbstractFull TextFull Text (PDF)

      • C. Trumstedt, E. Eriksson, A. M. Lundberg, T.-b. Yang, Z.-q. Yan, H. Wigzell, and M. E. Rottenberg

      • Role of IRAK4 and IRF3 in the control of intracellular infection with Chlamydia pneumoniae

      • J. Leukoc. Biol. 2007 81: 1591-1598.

      • AbstractFull TextFull Text (PDF)

      • M. Obonyo, M. Sabet, S. P. Cole, J. Ebmeyer, S. Uematsu, S. Akira, and D. G. Guiney

      • Deficiencies of Myeloid Differentiation Factor 88, Toll-Like Receptor 2 (TLR2), or TLR4 Produce Specific Defects in Macrophage Cytokine Secretion Induced by Helicobacter pylori

      • Infect. Immun. 2007 75: 2408-2414.

      • AbstractFull TextFull Text (PDF)

      • Y. Asai, Y. Makimura, and T. Ogawa

      • Toll-like receptor 2-mediated dendritic cell activation by a Porphyromonas gingivalis synthetic lipopeptide

      • J Med Microbiol 2007 56: 459-465.

      • AbstractFull TextFull Text (PDF)

      • M. Wiens, M. Korzhev, S. Perovic-Ottstadt, B. Luthringer, D. Brandt, S. Klein, and W. E. G. Muller

      • Toll-Like Receptors Are Part of the Innate Immune Defense System of Sponges (Demospongiae: Porifera)

      • Mol Biol Evol 2007 24: 792-804.

      • AbstractFull TextFull Text (PDF)

      • C. L. Sherry, J. C. O'Connor, J. M. Kramer, and G. G. Freund

      • Augmented Lipopolysaccharide-Induced TNF-{alpha} Production by Peritoneal Macrophages in Type 2 Diabetic Mice Is Dependent on Elevated Glucose and Requires p38 MAPK

      • J. Immunol. 2007 178: 663-670.

      • AbstractFull TextFull Text (PDF)

      • P. Thomas, D. A. Lazure, R. Moussa, O. Bajenova, P. A. Burke, A. Ganguly,and R. Armour Forse

      • Identification of two novel LPS-binding proteins in Kupffer cells: implications in TNF-{alpha} production

      • Innate Immunity 2006 12: 352-357.

      • AbstractFull Text (PDF)

      • S. K. Pathak, S. Basu, A. Bhattacharyya, S. Pathak, A. Banerjee, J. Basu, andM. Kundu

      • TLR4-Dependent NF-{kappa}B Activation and Mitogen- and Stress-Activated Protein Kinase 1-Triggered Phosphorylation Events Are Central to Helicobacter pylori Peptidyl Prolyl cis-, trans-Isomerase (HP0175)-Mediated Induction of IL-6 Release from Macrophages

      • J. Immunol. 2006 177: 7950-7958.

      • AbstractFull TextFull Text (PDF)

      • M. M. Herbst-Kralovetz andR. B. Pyles

      • Quantification of Poly(I:C)-Mediated Protection against Genital Herpes Simplex Virus Type 2 Infection.

      • J. Virol. 2006 80: 9988-9997.

      • AbstractFull TextFull Text (PDF)

      • W. Dong, Y. Liu, J. Peng, L. Chen, T. Zou, H. Xiao, Z. Liu, W. Li, Y. Bu, andY. Qi

      • The IRAK-1-BCL10-MALT1-TRAF6-TAK1 Cascade Mediates Signaling to NF-{kappa}B from Toll-like Receptor 4

      • J. Biol. Chem. 2006 281: 26029-26040.

      • AbstractFull TextFull Text (PDF)

      • S. M. Riordan, N. Skinner, J. Kurtovic, S. Locarnini, and K. Visvanathan

      • Reduced expression of toll-like receptor 2 on peripheral monocytes in patients with chronic hepatitis B.

      • CVI 2006 13: 972-974.

      • AbstractFull TextFull Text (PDF)

      • N. Esen andT. Kielian

      • Central Role for MyD88 in the Responses of Microglia to Pathogen-Associated Molecular Patterns.

      • J. Immunol. 2006 176: 6802-6811.

      • AbstractFull TextFull Text (PDF)

      • M. A. Jarvis, J. A. Borton, A. M. Keech, J. Wong, W. J. Britt, B. E. Magun, andJ. A. Nelson

      • Human Cytomegalovirus Attenuates Interleukin-1{beta} and Tumor Necrosis Factor Alpha Proinflammatory Signaling by Inhibition of NF-{kappa}B Activation.

      • J. Virol. 2006 80: 5588-5598.

      • AbstractFull TextFull Text (PDF)

      • K. Hazeki, S. Kinoshita, T. Matsumura, K. Nigorikawa, H. Kubo, and O. Hazeki

      • Opposite Effects of Wortmannin and 2-(4-Morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one Hydrochloride on Toll-Like Receptor-Mediated Nitric Oxide Production: Negative Regulation of Nuclear Factor-{kappa}B by Phosphoinositide 3-Kinase

      • Mol. Pharmacol. 2006 69: 1717-1724.

      • AbstractFull TextFull Text (PDF)

      • Y. Lin, Z. Liang, Y. Chen, and Y. Zeng

      • TLR3-Involved Modulation of Pregnancy Tolerance in Double-Stranded RNA-Stimulated NOD/SCID Mice

      • J. Immunol. 2006 176: 4147-4154.

      • AbstractFull TextFull Text (PDF)

      • M. G. Kelly, A. B. Alvero, R. Chen, D.-A. Silasi, V. M. Abrahams, S. Chan, I. Visintin, T. Rutherford, and G. Mor

      • TLR-4 Signaling Promotes Tumor Growth and Paclitaxel Chemoresistance in Ovarian Cancer.

      • Cancer Res. 2006 66: 3859-3868.

      • AbstractFull TextFull Text (PDF)

      • S. Matikainen, J. Siren, J. Tissari, V. Veckman, J. Pirhonen, M. Severa, Q. Sun, R. Lin, S. Meri, G. Uze, J. Hiscott, and I. Julkunen

      • Tumor Necrosis Factor Alpha Enhances Influenza A Virus-Induced Expression of Antiviral Cytokines by Activating RIG-I Gene Expression.

      • J. Virol. 2006 80: 3515-3522.

      • AbstractFull TextFull Text (PDF)

      • S. Heinemann, B. Biesinger, B. Fleckenstein, and J.-C. Albrecht

      • NF{kappa}B Signaling Is Induced by the Oncoprotein Tio through Direct Interaction with TRAF6

      • J. Biol. Chem. 2006 281: 8565-8572.

      • AbstractFull TextFull Text (PDF)

      • N. Suzuki, S. Suzuki, D. G. Millar, M. Unno, H. Hara, T. Calzascia, S. Yamasaki, T. Yokosuka, N.-J. Chen, A. R. Elford, J.-i. Suzuki, A. Takeuchi,C. Mirtsos, D. Bouchard, P. S. Ohashi, W.-C. Yeh, and T. Saito

      • A critical role for the innate immune signaling molecule IRAK-4 in T cell activation.

      • Science 2006 311: 1927-1932.

      • AbstractFull TextFull Text (PDF)

      • T. Seya, T. Akazawa, T. Tsujita, and M. Matsumoto

      • Role of Toll-like Receptors in Adjuvant-Augmented Immune Therapies.

      • Evid Based Complement Alternat Med 2006 3: 31-38.

      • AbstractFull TextFull Text (PDF)

      • C. F. Ortega-Cava, S. Ishihara, M. A. K. Rumi, M. M. Aziz, H. Kazumori, T. Yuki, Y. Mishima, I. Moriyama, C. Kadota, N. Oshima, Y. Amano, Y. Kadowaki, N. Ishimura, and Y. Kinoshita

      • Epithelial Toll-Like Receptor 5 Is Constitutively Localized in the Mouse Cecum and Exhibits Distinctive Down-Regulation during Experimental Colitis

      • CVI 2006 13: 132-138.

      • AbstractFull TextFull Text (PDF)

      • M. Eckert, I. Wittmann, M. Rollinghoff, A. Gessner, and M. Schnare

      • Endotoxin-Induced Expression of Murine Bactericidal Permeability/Increasing Protein Is Mediated Exclusively by Toll/IL-1 Receptor Domain-Containing Adaptor Inducing IFN-{beta}-Dependent Pathways

      • J. Immunol. 2006 176: 522-528.

      • AbstractFull TextFull Text (PDF)

      • M. Perl, C.-S. Chung, J. Lomas-Neira, T.-M. Rachel, W. L. Biffl, W. G. Cioffi, and A. Ayala

      • Silencing of Fas, but Not Caspase-8, in Lung Epithelial Cells Ameliorates Pulmonary Apoptosis, Inflammation, and Neutrophil Influx after Hemorrhagic Shock and Sepsis

      • Am. J. Pathol. 2005 167: 1545-1559.

      • AbstractFull TextFull Text (PDF)

      • H. Fan, B. Zingarelli, O. M. Peck, G. Teti, G. E. Tempel, P. V. Halushka, andJ. A. Cook

      • Lipopolysaccharide- and gram-positive bacteria-induced cellular inflammatory responses: role of heterotrimeric G{alpha}i proteins

      • Am. J. Physiol. Cell Physiol. 2005 289: C293-C301.

      • AbstractFull TextFull Text (PDF)

      • M. Wiens, M. Korzhev, A. Krasko, N. L. Thakur, S. Perovic-Ottstadt, H. J. Breter, H. Ushijima, B. Diehl-Seifert, I. M. Muller, and W. E. G. Muller

      • Innate Immune Defense of the Sponge Suberites domuncula against Bacteria Involves a MyD88-dependent Signaling Pathway: INDUCTION OF A PERFORIN-LIKE MOLECULE

      • J. Biol. Chem. 2005 280: 27949-27959.

      • AbstractFull TextFull Text (PDF)

      • A. Thiefes, S. Wolter, J. F. Mushinski, E. Hoffmann, O. Dittrich-Breiholz, N. Graue, A. Dorrie, H. Schneider, D. Wirth, B. Luckow, K. Resch, and M. Kracht

      • Simultaneous Blockade of NF{kappa}B, JNK, and p38 MAPK by a Kinase-inactive Mutant of the Protein Kinase TAK1 Sensitizes Cells to Apoptosis and Affects a Distinct Spectrum of Tumor Necrosis Target Genes

      • J. Biol. Chem. 2005 280: 27728-27741.

      • AbstractFull TextFull Text (PDF)

      • C. Li, J. Zienkiewicz, and J. Hawiger

      • Interactive Sites in the MyD88 Toll/Interleukin (IL) 1 Receptor Domain Responsible for Coupling to the IL1{beta} Signaling Pathway

      • J. Biol. Chem. 2005 280: 26152-26159.

      • AbstractFull TextFull Text (PDF)

      • H. Shindou, S. Ishii, M. Yamamoto, K. Takeda, S. Akira, and T. Shimizu

      • Priming Effect of Lipopolysaccharide on Acetyl-Coenzyme A:Lyso-Platelet-Activating Factor Acetyltransferase Is MyD88 and TRIF Independent

      • J. Immunol. 2005 175: 1177-1183.

      • AbstractFull TextFull Text (PDF)

      • C. L. Chin, L. J. Manzel, E. E. Lehman, A. L. Humlicek, L. Shi, T. D. Starner,G. M. Denning, T. F. Murphy, S. Sethi, and D. C. Look

      • Haemophilus influenzae from Patients with Chronic Obstructive Pulmonary Disease Exacerbation Induce More Inflammation than Colonizers

      • Am. J. Respir. Crit. Care Med. 2005 172: 85-91.

      • AbstractFull TextFull Text (PDF)

      • D. Strassheim, J.-Y. Kim, J.-S. Park, S. Mitra, and E. Abraham

      • Involvement of SHIP in TLR2-Induced Neutrophil Activation and Acute Lung Injury

      • J. Immunol. 2005 174: 8064-8071.

      • AbstractFull TextFull Text (PDF)

      • R. Yang, C. M. Wheeler, X. Chen, S. Uematsu, K. Takeda, S. Akira, D. V. Pastrana, R. P. Viscidi, and R. B. S. Roden

      • Papillomavirus Capsid Mutation To Escape Dendritic Cell-Dependent Innate Immunity in Cervical Cancer

      • J. Virol. 2005 79: 6741-6750.

      • AbstractFull TextFull Text (PDF)

      • Y. I. Miller, S. Viriyakosol, D. S. Worrall, A. Boullier, S. Butler, and J. L. Witztum

      • Toll-Like Receptor 4-Dependent and -Independent Cytokine Secretion Induced by Minimally Oxidized Low-Density Lipoprotein in Macrophages

      • Arterioscler. Thromb. Vasc. Bio. 2005 25: 1213-1219.

      • AbstractFull TextFull Text (PDF)

      • J. C. Ferreon, A. C. M. Ferreon, K. Li, and S. M. Lemon

      • Molecular Determinants of TRIF Proteolysis Mediated by the Hepatitis C Virus NS3/4A Protease

      • J. Biol. Chem. 2005 280: 20483-20492.

      • AbstractFull TextFull Text (PDF)

      • M. Loiarro, C. Sette, G. Gallo, A. Ciacci, N. Fanto, D. Mastroianni, P. Carminati, and V. Ruggiero

      • Peptide-mediated Interference of TIR Domain Dimerization in MyD88 Inhibits Interleukin-1-dependent Activation of NF-{kappa}B

      • J. Biol. Chem. 2005 280: 15809-15814.

      • AbstractFull TextFull Text (PDF)

      • L. Kim, L. D. Rio, B. A. Butcher, T. H. Mogensen, S. R. Paludan, R. A. Flavell,and E. Y. Denkers

      • p38 MAPK Autophosphorylation Drives Macrophage IL-12 Production during Intracellular Infection

      • J. Immunol. 2005 174: 4178-4184.

      • AbstractFull TextFull Text (PDF)

      • D. Aki, R. Mashima, K. Saeki, Y. Minoda, M. Yamauchi, and A. Yoshimura

      • Modulation of TLR signalling by the C-terminal Src kinase (Csk) in macrophages

      • GENES CELLS 2005 10: 357-368.

      • AbstractFull TextFull Text (PDF)

      • D. De Nardo, P. Masendycz, S. Ho, M. Cross, A. J. Fleetwood, E. C. Reynolds, J. A. Hamilton, and G. M. Scholz

      • A Central Role for the Hsp90{middle dot}Cdc37 Molecular Chaperone Module in Interleukin-1 Receptor-associated-kinase-dependent Signaling by Toll-like Receptors

      • J. Biol. Chem. 2005 280: 9813-9822.

      • AbstractFull TextFull Text (PDF)

      • J. C. I. Singh, S. M. Cruickshank, D. J. Newton, L. Wakenshaw, A. Graham,J. Lan, J. P. A. Lodge, P. J. Felsburg, and S. R. Carding

      • Toll-like receptor-mediated responses of primary intestinal epithelial cells during the development of colitis

      • Am. J. Physiol. Gastrointest. Liver Physiol. 2005 288: G514-G524.

      • AbstractFull TextFull Text (PDF)

      • J. Siren, J. Pirhonen, I. Julkunen, and S. Matikainen

      • IFN-{alpha} Regulates TLR-Dependent Gene Expression of IFN-{alpha}, IFN-{beta}, IL-28, and IL-29

      • J. Immunol. 2005 174: 1932-1937.

      • AbstractFull TextFull Text (PDF)

      • C. Basak, S. K. Pathak, A. Bhattacharyya, D. Mandal, S. Pathak, and M. Kundu

      • NF-{kappa}B- and C/EBP{beta}-driven Interleukin-1{beta} Gene Expression and PAK1-mediated Caspase-1 Activation Play Essential Roles in Interleukin-1{beta} Release from Helicobacter pylori Lipopolysaccharide-stimulated Macrophages

      • J. Biol. Chem. 2005 280: 4279-4288.

      • AbstractFull TextFull Text (PDF)

      • C. M. Greene, T. P. Carroll, S. G. J. Smith, C. C. Taggart, J. Devaney, S. Griffin, S. J. O'Neill, and N. G. McElvaney

      • TLR-Induced Inflammation in Cystic Fibrosis and Non-Cystic Fibrosis Airway Epithelial Cells

      • J. Immunol. 2005 174: 1638-1646.

      • AbstractFull TextFull Text (PDF)

      • L. Malmgaard, J. Melchjorsen, A. G. Bowie, S. C. Mogensen, and S. R. Paludan

      • Viral Activation of Macrophages through TLR-Dependent and -Independent Pathways

      • J. Immunol. 2004 173: 6890-6898.

      • AbstractFull TextFull Text (PDF)

      • T. Tsujita, H. Tsukada, M. Nakao, H. Oshiumi, M. Matsumoto, and T. Seya

      • Sensing Bacterial Flagellin by Membrane and Soluble Orthologs of Toll-like Receptor 5 in Rainbow Trout (Onchorhynchus mikiss)

      • J. Biol. Chem. 2004 279: 48588-48597.

      • AbstractFull TextFull Text (PDF)

      • K. S. Michelsen, T. M. Doherty, P. K. Shah, and M. Arditi

      • TLR Signaling: An Emerging Bridge from Innate Immunity to Atherogenesis

      • J. Immunol. 2004 173: 5901-5907.

      • AbstractFull TextFull Text (PDF)

      • T. Fujimoto, S. Yamazaki, A. Eto-Kimura, K. Takeshige, and T. Muta

      • The Amino-terminal Region of Toll-like Receptor 4 Is Essential for Binding to MD-2 and Receptor Translocation to the Cell Surface

      • J. Biol. Chem. 2004 279: 47431-47437.

      • AbstractFull TextFull Text (PDF)

      • F. Hatao, M. Muroi, N. Hiki, T. Ogawa, Y. Mimura, M. Kaminishi, and K.-i. Tanamoto

      • Prolonged Toll-like receptor stimulation leads to down-regulation of IRAK-4 protein

      • J. Leukoc. Biol. 2004 76: 904-908.

      • AbstractFull TextFull Text (PDF)

      • O. Levy, K. A. Zarember, R. M. Roy, C. Cywes, P. J. Godowski, and M. R. Wessels

      • Selective Impairment of TLR-Mediated Innate Immunity in Human Newborns: Neonatal Blood Plasma Reduces Monocyte TNF-{alpha} Induction by Bacterial Lipopeptides, Lipopolysaccharide, and Imiquimod, but Preserves the Response to R-848

      • J. Immunol. 2004 173: 4627-4634.

      • AbstractFull TextFull Text (PDF)

      • V. M. Abrahams, P. Bole-Aldo, Y. M. Kim, S. L. Straszewski-Chavez, T. Chaiworapongsa, R. Romero, and G. Mor

      • Divergent Trophoblast Responses to Bacterial Products Mediated by TLRs

      • J. Immunol. 2004 173: 4286-4296.

      • AbstractFull TextFull Text (PDF)

      • D. D. Bannerman, K. T. Eiting, R. K. Winn, and J. M. Harlan

      • FLICE-Like Inhibitory Protein (FLIP) Protects Against Apoptosis and Suppresses NF-{kappa}B Activation Induced by Bacterial Lipopolysaccharide

      • Am. J. Pathol. 2004 165: 1423-1431.

      • AbstractFull TextFull Text (PDF)

      • E. Lye, C. Mirtsos, N. Suzuki, S. Suzuki, and W.-C. Yeh

      • The Role of Interleukin 1 Receptor-associated Kinase-4 (IRAK-4) Kinase Activity in IRAK-4-mediated Signaling

      • J. Biol. Chem. 2004 279: 40653-40658.

      • AbstractFull TextFull Text (PDF)

      • S. Shirasawa, S. Sugiyama, I. Baba, J. Inokuchi, S. Sekine, K. Ogino, Y. Kawamura, T. Dohi, M. Fujimoto, and T. Sasazuki

      • Dermatitis due to epiregulin deficiency and a critical role of epiregulin in immune-related responses of keratinocyte and macrophage

      • Proc. Natl. Acad. Sci. USA 2004 101: 13921-13926.

      • AbstractFull TextFull Text (PDF)

      • H. S. Park, H. Y. Jung, E. Y. Park, J. Kim, W. J. Lee, and Y. S. Bae

      • Cutting Edge: Direct Interaction of TLR4 with NAD(P)H Oxidase 4 Isozyme Is Essential for Lipopolysaccharide-Induced Production of Reactive Oxygen Species and Activation of NF-{kappa}B

      • J. Immunol. 2004 173: 3589-3593.

      • AbstractFull TextFull Text (PDF)

      • N. Sato, N. Takahashi, K. Suda, M. Nakamura, M. Yamaki, T. Ninomiya, Y. Kobayashi, H. Takada, K. Shibata, M. Yamamoto, K. Takeda, S. Akira, T. Noguchi, and N. Udagawa

      • MyD88 But Not TRIF Is Essential for Osteoclastogenesis Induced by Lipopolysaccharide, Diacyl Lipopeptide, and IL-1{alpha}

      • JEM 2004 200: 601-611.

      • AbstractFull TextFull Text (PDF)

      • Y. Liu, W. Dong, L. Chen, R. Xiang, H. Xiao, G. De, Z. Wang, and Y. Qi

      • BCL10 Mediates Lipopolysaccharide/Toll-like Receptor-4 Signaling through Interaction with Pellino2

      • J. Biol. Chem. 2004 279: 37436-37444.

      • AbstractFull TextFull Text (PDF)

      • M.-F. Tsan andB. Gao

      • Endogenous ligands of Toll-like receptors

      • J. Leukoc. Biol. 2004 76: 514-519.

      • AbstractFull TextFull Text (PDF)

      • L. E. Yauch, M. K. Mansour, S. Shoham, J. B. Rottman, and S. M. Levitz

      • Involvement of CD14, Toll-Like Receptors 2 and 4, and MyD88 in the Host Response to the Fungal Pathogen Cryptococcus neoformans In Vivo

      • Infect. Immun. 2004 72: 5373-5382.

      • AbstractFull TextFull Text (PDF)

      • M. A. West, R. P. A. Wallin, S. P. Matthews, H. G. Svensson, R. Zaru, H.-G. Ljunggren, A. R. Prescott, and C. Watts

      • Enhanced Dendritic Cell Antigen Capture via Toll-Like Receptor-Induced Actin Remodeling

      • Science 2004 305: 1153-1157.

      • AbstractFull TextFull Text (PDF)

      • F. Takeshita, K. Suzuki, S. Sasaki, N. Ishii, D. M. Klinman, and K. J. Ishii

      • Transcriptional Regulation of the Human TLR9 Gene

      • J. Immunol. 2004 173: 2552-2561.

      • AbstractFull TextFull Text (PDF)

      • K. W. Boehme andT. Compton

      • Innate Sensing of Viruses by Toll-Like Receptors

      • J. Virol. 2004 78: 7867-7873.

      • Full TextFull Text (PDF)

      • A. Marson, R. M. Lawn, and T. Mikita

      • Oxidized Low Density Lipoprotein Blocks Lipopolysaccharide-induced Interferon {beta} Synthesis in Human Macrophages by Interfering with IRF3 Activation

      • J. Biol. Chem. 2004 279: 28781-28788.

      • AbstractFull TextFull Text (PDF)

      • A. E. Gelman, J. Zhang, Y. Choi, and L. A. Turka

      • Toll-Like Receptor Ligands Directly Promote Activated CD4+ T Cell Survival

      • J. Immunol. 2004 172: 6065-6073.

      • AbstractFull TextFull Text (PDF)

      • P. Proost, S. Verpoest, K. V. de Borne, E. Schutyser, S. Struyf, W. Put, I. Ronsse, B. Grillet, G. Opdenakker, and J. V. Damme

      • Synergistic induction of CXCL9 and CXCL11 by Toll-like receptor ligands and interferon-{gamma} in fibroblasts correlates with elevated levels of CXCR3 ligands in septic arthritis synovial fluids

      • J. Leukoc. Biol. 2004 75: 777-784.

      • AbstractFull TextFull Text (PDF)

      • D. Strassheim, K. Asehnoune, J.-S. Park, J.-Y. Kim, Q. He, D. Richter, K. Kuhn, S. Mitra, and E. Abraham

      • Phosphoinositide 3-Kinase and Akt Occupy Central Roles in Inflammatory Responses of Toll-Like Receptor 2-Stimulated Neutrophils

      • J. Immunol. 2004 172: 5727-5733.

      • AbstractFull TextFull Text (PDF)

      • D. Zhang, G. Zhang, M. S. Hayden, M. B. Greenblatt, C. Bussey, R. A. Flavell, and S. Ghosh

      • A Toll-like Receptor That Prevents Infection by Uropathogenic Bacteria

      • Science 2004 303: 1522-1526.

      • AbstractFull TextFull Text (PDF)

      • P. J. Ross, E. C. Lavelle, K. H. G. Mills, and A. P. Boyd

      • Adenylate Cyclase Toxin from Bordetella pertussis Synergizes with Lipopolysaccharide To Promote Innate Interleukin-10 Production and Enhances the Induction of Th2 and Regulatory T Cells

      • Infect. Immun. 2004 72: 1568-1579.

      • AbstractFull TextFull Text (PDF)

      • A. Moustakas andC.-H. Heldin

      • Ecsit-ement on the crossroads of Toll and BMP signal transduction

      • Genes Dev. 2003 17: 2855-2859.

      • Full TextFull Text (PDF)