Lektie til modulet:
Aktiviteter i modulet
2z 9/10
Dagens opgave
Lav opgave 2.d1.4 (brug papir og blyant - ingen hjælpemidler kun formelsamling) - 8 minutter
-------------------------------------------------------
Formelsamlingskahoot (Klavs' link)
Logaritmefunktioner 1a næste gang
De vigtigste pointer fra videoerne:
En logaritmefunktion er den omvendte funktion til en eksponentiel funktion - på samme måde som en kvadratrod ophæver eller er det omvendte til "i anden"
Graferne for en eksponentiel funktion og en logaritmefunktion er hinandens spejlbilleder
Dm og Vm for en logaritmefunktion svarer til Vm og Dm for en eksponentielfunktion
Der findes uendelig mange logaritmefunktioner. En omvendt funktion for hver eksponentiel funktion. f(x) = aˣ
Vi regner kun med log(x) (titalslogaritmen, der er den omvendte til 10˟
og
ln(x) (den naturlige logaritme, der er den omvendte til e˟
e kaldes Eulers tal. e=2,7182818284590452353602......
Der gælder vigtige regneregler - formlerne (78) - (85) - men (78) er den vigtige - se billederne.
Lektie til modulet:
Aktiviteter i modulet
2z 25/10
Dagens opgave
Lav opgave 1.d1.15 og 16 (brug papir og blyant - ingen hjælpemidler kun formelsamling) - 8 minutter
-------------------------------------------------------
Se Klavs' opsummering af de grundlæggende egenskaber ved logaritmer (4:30)
Se også egenskaber for tre eksponentielle funktioner og tre logaritmefunktioner på billedet herunder.
Grafer med logaritmiske akser
Aflæsning på logaritmepapir (enkelt 3.17) og
(øvelse i aflæsning 1:42).
Videoer: Aflæs på enkelt log (3:40) og
aflæsning på dobbelt-log (4:30)
Se 2 konkrete eksempler nederst
Til emnet logaritmefunktion kan anbefales denne playliste