Evolucion Histórica

La Mecánica de Fluidos se ocupa de la interacción de los fluidos con su entorno, tanto en reposo (fluidoestática) como en movimiento (fluidodinámica). La mecánica de fluidos es fundamental en prácticamente todos los campos de la ingeniería: industrial, aeronáutica, naval, geológica, civil, química,..., así como en disciplinas científicas: oceanografía, meteorología, acústica,...

El interés por la mecánica de fluidos se remonta a las aplicaciones más antiguas de los fluidos en ingeniería. El matemático y filósofo griego ARQUÍMEDES realizó una de las primeras contribuciones con la invención del “tornillo sin fin” que se le atribuye tradicionalmente. Los romanos desarrollaron otras máquinas y mecanismos hidráulicos; no sólo empleaban el tornillo de Arquímedes para trasegar agua en agricultura y minería, sino que construyeron extensos sistemas de conducción de agua, los acueductos. Durante el siglo I a. C., el ingeniero y arquitecto VITRUBIO inventó la rueda hidráulica horizontal, que revolucionó la técnica de moler grano. Después de Arquímedes pasaron más de 1600 años antes de que se produjera el siguiente avance científico significativo, debido al gran genio italiano LEONARDO DA VINCI, que aportó la primera ecuación de la conservación de masa, o ecuación de continuidad y desarrolló múltiples sistemas y mecanismos hidráulicos y aerodinámicos.

Posteriormente el matemático y físico italiano Evangelista TORRICELLI, inventó el barómetro en 1643, y formuló el teorema de Torricelli, que relaciona la velocidad de salida de un líquido a través de un orificio de un recipiente, con la altura del líquido situado por encima del agujero. La génesis de la actual mecánica de fluidos se debe al matemático y físico inglés Isaac NEWTON, con la publicación en 1687 de los Philosophie naturalis principia mathematica se inicia el carácter científico de la disciplina, en donde se analiza por primera vez la dinámica de fluidos basándose en leyes de la naturaleza de carácter general. En 1755 el matemático suizo Leonhard EULER, dedujo las ecuaciones básicas para un fluido ideal.

EULER fue el primero en reconocer que las leyes dinámicas para los fluidos sólo se pueden expresar de forma relativamente sencilla si se supone que el fluido e ideal, en donde se desprecian los efectos disipativos internos por transporte de cantidad de movimiento entre partículas, es decir, el fluido es no viscoso. Sin embargo, como esto no es así en el caso de los fluidos reales en movimiento, los resultados con las ecuaciones de Euler sólo pueden servir de estimación para flujos en los que los efectos de la viscosidad son pequeños.

La siguiente aportación de gran importancia fue la primera expresión de la ecuación de conservación de energía, dada por Daniel BERNOULLI con la publicación en 1738 de su Hydrodinamica sive de viribus et motibus fluidorum comentarii; el denominado teorema de Bernoulli, establece que la energía mecánica total de un flujo incompresible y no viscoso es constante a lo largo de una línea de corriente (líneas de flujo que son paralelas a la dirección del flujo en cada punto, y que en el caso de flujo uniforme coinciden con la trayectoria de las partículas individuales de fluido).

El problema de los efectos viscosos de disipación de energía, se empezó a abordar experimentalmente con flujos a baja velocidad en tuberías, independientemente en 1839 por el médico francés Jean POISEUILLE, que estaba interesado por las características del flujo de la sangre, y en 1840 por el ingeniero alemán Gotthif HAGEN. El primer intento de incluir los efectos de la viscosidad en las ecuaciones de gobierno de la dinámica de fluidos se debió al ingeniero francés Claude NAVIER en 1827 e, independientemente, al matemático británico George STOKES, quien en 1845 perfeccionó las ecuaciones básicas para los fluidos viscosos incompresibles. Actualmente se las conoce como ecuaciones de Navier-Stokes.

En cuanto al problema del flujo en tuberías de un fluido viscoso, parte de la energía mecánica se disipa como consecuencia del rozamiento viscoso, lo que provoca una caída de presión a lo largo de la tubería; las ecuaciones de Navier-Stokes sugieren que la caída de presión es proporcional a la velocidad media. Los experimentos llevados a cabo a mediados del siglo XIX demostraron que esto sólo era cierto para velocidades bajas; para velocidades altas, la caída de presión era más bien proporcional al cuadrado de la velocidad. Este problema no se resolvió hasta 1883, cuando el ingeniero británico Osborne REYNOLDS demostró la existencia de dos tipos de flujo viscoso en tuberías. A velocidades bajas, las partículas del fluido siguen las líneas de corriente (flujo laminar) y los resultados experimentales coinciden con las predicciones analíticas; a velocidades más elevadas, surgen fluctuaciones en la velocidad del flujo o turbulencias (flujo turbulento), en una forma difícil de predecir completamente. Reynolds también determinó que la transición del flujo laminar al turbulento era función de un único parámetro, que desde entonces se conoce como número de Reynolds:

Re = (v Lρ)/μ

Los flujos turbulentos no se pueden evaluar exclusivamente a partir de las predicciones de las ecuaciones de conservación, y su análisis depende de una combinación de datos experimentales y modelos matemáticos. Gran parte de la investigación moderna en mecánica de fluidos está dedicada a una mejor formulación de la turbulencia, y que junto con las nuevas técnicas de simulación en ordenador (CFD: computational fluid dynamics), están resolviendo problemas cada vez más complejos.

La complejidad de los flujos viscosos, y en particular de los flujos turbulentos, restringió en gran medida los avances en dinámica de fluidos hasta que el ingeniero alemán Ludwing PRANDTL publicó un artículo en el congreso de matemática aplicada, y estableció que muchos flujos pueden separarse en dos regiones. La región próxima a la superficie de interacción entre fluido y sólido está formada por una delgada zona en donde se manifiestan los efectos viscosos, y puede simplificarse el modelo matemático; fuera de esta capa límite se pueden despreciar los efectos viscosos, y pueden emplearse las ecuaciones más simples para flujos no viscosos. La teoría de la capa límite ha hecho posible gran parte del desarrollo de los perfiles aerodinámicos, de las alas de los aviones, y de los álabes de las turbomáquinas. Posteriores desarrollos y aplicaciones de la teoría de capa límite han sido desarrollados por varios investigadores: como el ingeniero húngaro Theodore von KARMAN (discípulo del propio Prandtl), el matemático alemán

Richard von MISES, y el físico británico Geoffrey TAYLOR.

El interés por el flujo de gases (flujo compresible) comenzó con el desarrollo de turbinas de vapor por el inventor británico Charles PARSONS y el ingeniero sueco Carl de LAVAL durante la década de 1880; pero los avances modernos tuvieron que esperar al desarrollo de la turbina de combustión y la propulsión a chorro de la década de 1930; y los posteriores estudios de balística y en general flujos a alta velocidad. El comportamiento en el flujo de un gas compresible depende de si la velocidad del flujo es mayor o menor que la velocidad de las perturbaciones en el flujo, denominada velocidad sónica o velocidad del sonido. Para un gas ideal la velocidad del sonido es proporcional a la raíz cuadrada de la temperatura absoluta. Si la velocidad del flujo es menor que la sónica, flujo subsónico, las ondas de presión pueden transmitirse a través de todo el fluido y así adaptar el flujo que se dirige hacia un objeto; si la velocidad es mayor que la sónica, flujo supersónico, las ondas de presión no pueden viajar aguas arriba para adaptar el flujo; así el aire que se dirige hacia el ala de un avión en vuelo supersónico no esta preparado para la perturbación que va a causar el ala y tiene que cambiar de dirección repentinamente en la proximidad del ala, lo que lleva a una compresión intensa u onda de choque. La relación entre la velocidad del flujo y la velocidad sónica se denomina número de Mach, en honor al físico austriaco Ernest MACH. En cuanto a la estática de fluidos, su característica fundamental es que la fuerza ejercida por el entorno sobre cualquier partícula del fluido estático es la misma en todas las direcciones; si las fuerzas fueran desiguales, la partícula se desplazaría en la dirección de la fuerza resultante. De ello se deduce que la fuerza por unidad de superficie que el fluido ejerce contra las paredes del recipiente que lo contiene es perpendicular a la pared en cada punto; a la fuerza normal por unidad de superficie se le denomina presión. Este concepto fue formulado por primera vez por el matemático francés Blaise PASCAL en 1647, y se conoce como principio de Pascal.

El otro principio importante en estática de fluidos fue descubierto por el matemático griego ARQUÍMEDES; el principio de Arquímedes afirma que todo cuerpo sumergido en un fluido experimenta una fuerza vertical ascendente igual al peso del fluido desplazado por dicho cuerpo. El punto sobre el que puede considerarse que actúan todas las fuerzas de flotación, se llama centro de flotación (centro de carena en un buque). El centro de flotación está situado en la vertical del centro de gravedad del cuerpo; si está por encima el objeto flota en equilibrio y es estable; si el centro de flotación está por debajo del centro de gravedad, solo hay estabilidad si la distancia metacéntrica es positiva.