Вики

http://ru.wikipedia.org/wiki/Молекулярное_моделирование

Молекулярное моделирование

Молекулярное моделирование (ММ) — это собирательное название, относящееся к теоретическим подходам и вычислительным методам моделирования или изображения поведения молекул. Эти методы используются компьютерной химии, вычислительной биологии и науке о материалах для изучения молекулярных систем различных размеров. Простейшие вычисления могут быть выполнены вручную, но компьютеры становятся абсолютно необходимы при расчётах систем любого разумного масштаба. Общей чертой методов ММ является атомистический уровень описания молекулярных систем — наименьшими частицами являются атомы или небольшие группы атомов. В этом состоит отличие ММ от квантовой химии, где в явном виде учитываются и электроны. Таким образом, преимуществом ММ является меньшая сложность в описании систем, позволяющая рассмотрение большего числа частиц при расчётах.

Материал из Википедии — свободной энциклопедии

Молекулярная механика

Молекулярная механика — один из подходов в ММ, использующий классическую механику для описания физических основ модели. Атомы (ядра с электронами) представляются точечными массами с соответствующими зарядами. Взаимодействия между соседними атомами включают упругие взаимодействия (соответствующиехимическим связям) и силы Ван-дер-Ваальса, описываемые традиционно потенциалом Леннарда-Джонса. Электростатические взаимодействия вычисляются по закону Кулона. Атомам в пространстве присваиваются Декартовы или внутренние координаты; в динамических расчётах атомам также могут быть присвоены скорости, соответствующие температуре. Обобщающее математическое выражение известно как потенциальная функция (см. уравнения) и соответствует внутренней энергии системы (U) — термодинамической величине, равной сумме потенциальной энергии и кинетической. Потенциальная функция представляет потенциальную энергию как сумму энергетических членов, соответствующих отклонению от равновесных значений в длинах связей, валентных и торсионных углах, и членов для не связанных пар атомов, соответствующих ван-дер-Ваальсовым и электростатическим взаимодействиям.

Набор параметров, состоящий из равновесных значений длин связей, валентных углов, величин парциальных зарядов, силовых констант и ван-дер-Ваальсовских параметров, называется силовым полем. Различные реализации молекулярной механики используют слегка отличающиеся математические выражения и, следовательно, различные константы в потенциальной функции. Распространенные силовые поля, используемые в настоящее время, были разработаны с использованием точных квантовых расчетов и/или подгонкой под экспериментальные данные.

Для поиска локального минимума потенциальной энергии используются соответствующие методы минимизации (например,метод наискорейшего спуска и метод сопряженных градиентов), а для изучения поведения систем с течением времени используются методы молекулярной динамики. Низшие энергетические состояния более стабильны и имеют более важное значение из-за своей роли в химических и биологических процессах. Молекулярно-динамические расчеты, с другой стороны, показывают поведение системы как функцию от времени. И для минимизации, и для молекулярной динамики главным образом используется второй закона НьютонаF = ma (или, что равносильно, a = F / m). Интегрирование этого закона движения с помощью различных алгоритмов приводит к получению траекторий атомов в пространстве и времени. Сила, действующая на атом, определяется как отрицательная производная функции потенциальной энергии.

Молекулы могут быть смоделированы как в вакууме, так и в присутствии растворителя, например воды. Расчёты систем в вакууме называются расчётами «в газовой фазе», в то время как расчёты, включающие молекулы растворителя, называются расчётами «с явно заданным растворителем». Другая группа расчётов учитывает наличие растворителя оценочно, с помощью дополнительных членов в потенциальной функции — так называемые расчёты «с неявным растворителем».

В настоящее время методы молекулярного моделирования стали обыденными при изучении структуры, динамики и термодинамики неорганических, биологических и полимерных систем. Среди биологических явлений, которые исследуются методами ММ, сворачивание белков, ферментативный катализ, стабильность белков, конформационные превращения и процессы молекулярного узнавания в белках, ДНК и мембранах.

Популярные программы для молекулярного моделирования

См. также

Внешние ссылки

Ссылки

    • A. R. Leach, Molecular Modelling: Principles and Applications, 2001, ISBN 0-582-38210-6
    • D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 1996, ISBN 0-12-267370-0
    • D. C. Rapaport, The Art of Molecular Dynamics Simulation, 2004, ISBN 0-521-82586-7
    • R. J. Sadus, Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation, 2002, ISBN 0-444-51082-6
    • K.I.Ramachandran, G Deepa and Krishnan Namboori. P.K. Computational Chemistry and Molecular Modeling Principles and Applications 2008[1] ISBN 978-3-540-77302-3 Springer-Verlag GmbH
    • А. В. Погребняк Молекулярное моделирование и дизайн биологически активных веществ. — Ростов-на-Дону: Издательство СКНЦ ВШ, 2003. —ISBN 5-87872-258-5

Категории: Методы биологических исследований | Молекулярное моделирование | Биоинформатика | Молекулярная биология

~E = E_{bonds} + E_{angle} + E_{dihedral} + E_{non-bonded}
~E_{non-bonded} = E_{electrostatic} + E_{van der Waals}

Двугранные углы являются одними из параметров в процессе молекулярного моделирования белков.