Ch 20

http://8e.devbio.com/article.php?ch=20&id=268

Plant Life Cycles

Plants have both multicellular haploid and multicellular diploid stages in their life cycles. Embryonic development is seen only in the diploid generation. The embryo, however, is produced by the fusion of gametes, which are formed only by the haploid generation. Understanding the relationship between the two generations is important in the study of plant development.

In plants, gametes develop in the multicellular haploid gametophyte (Greek phyton, “plant”). Fertilization gives rise to a multicellular diploid sporophyte, which produces haploid spores via meiosis. This type of life cycle is called a haplodiplontic life cycle (Figure 1). It differs from the diplontic life cycle of most animals, in which only the gametes are in the haploid state. In haplodiplontic life cycles, gametes are not the direct result of a meiotic division. Diploid sporophyte cells undergo meiosis to produce haploid spores. Each spore then goes through mitotic divisions to yield a multicellular, haploid gametophyte. Mitotic divisions within the gametophyte are required to produce the gametes. The diploid sporophyte results from the fusion of two gametes. Among the Plantae, the gametophytes and sporophytes of a species have distinct morphologies (in some algae they look alike). How a single genome can be used to create two unique morphologies is an intriguing puzzle.

Figure 1 Plants have haplodiplontic life cycles that involve mitotic divisions (resulting in multicellularity) in both the haploid and diploid generations (paths A and D). Most animals are diplontic and undergo mitosis only in the diploid generation (paths B and D). Multicellular organisms with haplontic life cycles follow paths A and C.

All plants alternate generations. There is an evolutionary trend from sporophytes that are nutritionally dependent on autotrophic (self-feeding) gametophytes to the opposite—gametophytes that are dependent on autotrophic sporophytes. This trend is exemplified by comparing the life cycles of a moss, a fern, and an angiosperm (see Figures 2-4). (Gymnosperm life cycles bear many similarities to those of angiosperms; the distinctions will be explored in the context of angiosperm development.)

The “leafy” moss you walk on in the woods is the gametophyte generation of that plant (Figure 2). Mosses are heterosporous, which means they make two distinct types of spores; these develop into male and female gametophytes. Male gametophytes develop reproductive structures called antheridia (singular, antheridium) that produce sperm by mitosis. Female gametophytes develop archegonia (singular, archegonium) that produce eggs by mitosis. Sperm travel to a neighboring plant via a water droplet, are chemically attracted to the entrance of the archegonium, and fertilization results.1 The embryonic sporophyte develops within the archegonium, and the mature sporophyte stays attached to the gametophyte. The sporophyte is not photosynthetic. Thus both the embryo and the mature sporophyte are nourished by the gametophyte. Meiosis within the capsule of the sporophyte yields haploid spores that are released and eventually germinate to form a male or female gametophyte.

Figure 2 Life cycle of a moss (genus Polytrichum). The sporophyte generation is dependent on the photosynthetic gametophyte for nutrition. Cells within the sporangium of the sporophyte undergo meiosis to produce male and female spores, respectively. These spores divide mitotically to produce multicellular male and female gametophytes. Differentiation of the growing tip of the gametophyte produces antheridia in males and archegonia in females. The sperm and eggs are produced mitotically in the antheridia and archegonia, respectively. Sperm are carried to the archegonia in water droplets. After fertilization, the sporophyte generation develops in the archegonium and remains attached to the female gametophyte. (Click image to enlarge.)

Ferns follow a pattern of development similar to that of mosses, although most (but not all) ferns are homosporous. That is, the sporophyte produces only one type of spore within a structure called the sporangium (Figure 3). A single gametophyte can produce both male and female sex organs. The greatest contrast between the mosses and the ferns is that both the gametophyte and the sporophyte of the fern photosynthesize and are thus autotrophic; the shift to a dominant sporophyte generation is taking place.2

Figure 3 Life cycle of a fern (genus Polypodium). The sporophyte generation is photosynthetic and is independent of the gametophyte. The sporangia are protected by a layer of cells called the indusium. This entire structure is called a sorus. Meiosis within the sporangia yields a haploid spore. Each spore divides mitotically to produce a heart-shaped gametophyte, which differentiates both archegonia and antheridia on one individual. The gametophyte is photosynthetic and independent, although it is smaller than the sporophyte. Fertilization takes place when water is available for sperm to swim to the archegonia and fertilize the eggs. The sporophyte has vascular tissue and roots; the gametophyte does not. (Click image to enlarge.)

At first glance, angiosperms may appear to have a diplontic life cycle because the gametophyte generation has been reduced to just a few cells (Figure 4). However, mitotic division still follows meiosis in the sporophyte, resulting in a multicellular gametophyte, which produces eggs or sperm. All of this takes place in the organ that characterizes the angiosperms: the flower. Male and female gametophytes have distinct morphologies (i.e., angiosperms are heterosporous), but the gametes they produce no longer rely on water for fertilization. Rather, wind or members of the animal kingdom deliver the male gametophyte—pollen—to the female gametophyte. Another evolutionary innovation found in the gymnosperms and angiosperms is the production of a seed coat, which adds an extra layer of protection around the embryo. A further protective layer, the fruit, is unique to the angiosperms and aids in the dispersal of the enclosed embryos by wind or animals.

Figure 4 Life cycle of an angiosperm, represented here by a pea plant (genus Pisum). The sporophyte is the dominant generation, but multicellular male and female gametophytes are produced within the flowers of the sporophyte. Cells of the microsporangium within the anther undergo meiosis to produce microspores. Subsequent mitotic divisions are limited, but the end result is a multicellular pollen grain. The megasporangium is protected by two layers of integuments and the ovary wall. Within the megasporangium, meiosis yields four megaspores—three small and one large. Only the large megaspore survives to produce the embryo sac. Fertilization occurs when the pollen germinates and the pollen tube grows toward the embryo sac. The sporophyte generation may be maintained in a dormant state, protected by the seed coat. (Click image to enlarge.)

1Have you ever wondered why there are no moss trees? Aside from the fact that the gametophytes of mosses (and other plants) do not have the necessary structural support and transport systems to attain tree height, it would be very difficult for a sperm to swim up a tree!

2It is possible to have tree ferns, for two reasons. First, the gametophyte develops on the ground, where water can facilitate fertilization. Second, unlike mosses, the fern sporophyte has vascular tissue, which provides the support and transport system necessary to achieve substantial height.

© All the material on this website is protected by copyright. It may not be reproduced in any form without permission from the copyright holder.

http://8e.devbio.com/citation.php?ch=20

HOME :: CHAPTER 20 :: PLANT LIFE CYCLES :: PLANT LIFE CYCLES

HOME :: CHAPTER 20 :: PLANT LIFE CYCLES :: PLANT LIFE CYCLES

Chapter 20: An Overview of Plant Development

Where possible, references have been linked to PubMed, the National Center for Biotechnology Information’s online database of journal article citations. Citations that do not include links to PubMed are either referring to papers that are too old to be included in PubMed, or to books, which are not listed on PubMed.

Achard, P., H. Cheng, L. DeGrauwe, J. Decat, H. Schoutteten, T. Moritz, D. Van Der Straeten, J. Peng and N. P. Harberd. 2006. Integration of plant responses to environmentally activated phytohormonal signals. Science 311: 91–94.

PubMed Link

Alessa, L. and D. L. Kropf. 1999. F-actin marks the rhizoid pole in living Pelvetia compressa zygotes. Development 126: 201–209.

PubMed Link

Bao, N., K.-W. Lye and M. K. Barton. 2004. MicroRNA binding sites in Arabidopsisclass III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev. Cell 7: 653–662.

PubMed Link

Barton, M. K. and R. S. Poethig. 1993. Formation of the shoot apical meristem inArabidopsis thaliana: An analysis of development in the wild type and in theshoot meristemless mutant. Development 119: 823–831.

Bäurle, I. and T. Laux. 2003. Apical meristems: The plant’s fountain of youth.BioEssays 25: 961–970.

PubMed Link

Belanger, K. D. and R. S. Quatrano. 2000. Polarity: The role of localized secretion. Curr. Opin. Plant Biol. 3: 67–72.

PubMed Link

Benfey, P. N. 1999. Is the shoot a root with a view? Curr. Opin. Plant Biol. 2: 39–43.

PubMed Link

Benfey, P. N., P. J. Linstead, K. Roberts, J. W. Schiefelbein, M.-T. Hauser, and R. A. Aeschbacher. 1993. Root development in Arabidopsis: Four mutants with dramatically altered root morphogenesis. Development 119: 53–70.

PubMed Link

Bharathan, G., T. E. Goliber, C. Moore, S. Kessler, T. Pham and N. R. Sinha. 2002. Homologies in leaf form inferred from KNOX1 gene expression during development. Science 296: 1858–1860.

PubMed Link

Bhattacharyya, M. K., A. M. Smith, T. H. N. Ellis, C. Hedley and C. Martin. 1990. The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60: 115–122.

PubMed Link

Bl·zquez, M. A. 2005. The right time and place for making flowers. Science 309: 1024–1025.

PubMed Link

Bl·zquez, M. A., L. N. Soowai, I. Lee and D. Weigel. 1997. LEAFY expression and flower initiation in Arabidopsis. Development 124: 3835–3844.

PubMed Link

Bl·zquez, M. A. and D. Weigel. 2000. Integration of floral inductive signals inArabidopsis. Nature 404: 889–892.

PubMed Link

Borevitz, J. O. and 10 others. 2002. Quantitative trait loci controlling light and hormone response in two accessions of Arabidopsis thaliana. Genetics 160: 683–696.

PubMed Link

Bowman, J. 1994. Arabidopsis: An Atlas of Morphology and Development. Springer-Verlag, New York.

Bradley, D., R. Carpenter, L. Copsey, C. Vincent, S. Rothstein and E. Coen. 1996. Control of inflorescence architecture in Antirrhinum. Nature 379: 791–797.

PubMed Link

Bradley, D., O. Ratcliffe, C. Vincent, R. Carpenter and E. Coen. 1997. Inflorescence commitment and architecture in Arabidopsis. Science 275: 80–83.

PubMed Link

Brown, K. S. 1999. Deep Green rewrites evolutionary history of plants. Science285: 990–991.

PubMed Link

Brownlee, C. 2004. From polarity to pattern: Early development of in fucoid algae. Ann. Plant Rev. 12: 138–156.

Brownlee, C. and F. Berger. 1995. Extracellular matrix and pattern in plant embryos: On the lookout for developmental information. Trends Genet. 11: 344–348.

PubMed Link

Byrne, M. E. 2005. Networks in leaf development. Curr. Opin. Plant Biol. 8: 59–66.

PubMed Link

Cai, G. and M. Cresti. 1999. Rethinking cytoskeleton in plant reproduction: Towards a biotechnological future? Sex. Plant Reprod. 12: 67–70.

Charlesworth, D. 2002. Plant sex determination and sex chromosomes. Heredity88: 94–101.

PubMed Link

Christianson, M. L. 1986. Fate map of the organizing shoot apex in Gossypium.Am. J. Bot. 73: 947–958.

Clark, J. K. and W. F. Sheridan. 1986. Developmental profiles of the maize embryo-lethal mutants dek22 and dek23. J. Hered. 77: 83–92.

Clark, S. E. and J. Schiefelbein. 1997. Expanding insights into the role of cell proliferation in plant development. Trends Cell Biol. 7: 454–458.

Clark, S. E., S. E. Jacobsen, J. Z. Levin and E. M. Meyerowitz. 1996. TheCLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development 122: 1567–1575.

PubMed Link

Clark, S. E., R. W. Williams and E. M. Meyerowitz. 1997. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89: 575–585.

PubMed Link

Coen, E. S. and E. M. Meyerowitz. 1991. The war of the whorls: Genetic interactions controlling flower development. Nature 353: 31–37.

PubMed Link

Columbo, L. J. Franken, A. P. Van der Krol, P. E. Wittich, H. J. Dons and G. C. Angenent. 1997.

Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9: 703–715.

PubMed Link

Cox, D. N., A. Chao, J. Baker, L. Chang, D. Qiao and H. Lin. 1998. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12: 3715–3727.

PubMed Link

Cruden, R. W. and R. M. Lloyd. 1995. Embryophytes have equivalent sexual phenotypes and breeding systems: Why not a common terminology to describe them? Am. J. Bot. 82: 816–825.

PubMed Link

Cubas, P., E. Coen and J. M. Martinex Zapater. 2001. Ancient asymmetries in the evolution of flowers. Curr. Biol. 11: 1050–1052.

PubMed Link

Dharmasiri, N., S. Dharmasiri, and M. Estelle. 2005. The F-box protein TIR1 is an auxin receptor. Nature 435: 441–445.

PubMed Link

Deng, X. W. and P. H. Quail. 1999. Signalling in light-controlled development.Semin. Cell Dev. Biol. 10: 121–129.

PubMed Link

Di Laurenzio, L., and 8 others. 1996. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86: 423–33.

PubMed Link

Doerner, P. 1999. Shoot meristems: Intercellular signals keep the balance. Curr. Biol. 9: R377–R380.

PubMed Link

Donoghue, M. J., R. H. Ree and D. A. Baum 1998. Phylogeny and the evolution of flower symmetry in the Asteridae. Trends Plant Sci. 3: 311–317.

Esau, K. 1977. Anatomy of Seed Plants, 2nd Ed. John Wiley & Sons, New York.

Ferrandiz, C., Q. Gu, R. Martienssen and M. F. Yanofsky. 2000. Redundant regulation of meristem identity and plant architecture by FRUITFUL, APETALA1and CAULIFLOWER. Development 127: 725–734.

PubMed Link

Fleming, A. J. 2005. Formation of primordia and phyllotaxy. Curr. Opin. Plant Biol. 8: 53–58.

PubMed Link

Franklin-Tong, V. E., B. K. Drobak, A. C. Allan, P. A. C. Watkins and A. J. Trewavas. 1996. Growth of pollen tubes in Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-trisphosphate. Plant Cell8: 1305–1321.

PubMed Link

Franklin-Tong, V. E. and F. C. H. Franklin. 2003. Gametophytic self-incompatibility inhibits pollen tube growth using different mechanisms. Trends Plant Sci. 8, 598–605.

Franklin-Tong, V. E., T. L. Holdaway-Clarke, K. R. Straatman, J. G. Kunkel and P. K. Hepler. 2002. Involvement of extracellular calcium influx in the self-incompatibility response of Papaver rhoeas. Plant J. 29: 333–345.

PubMed Link

Friedman, W. E. 1998. The evolution of double fertilization and endosperm: An “historical” perspective. Sex. Plant Rep. 11: 6–16.

PubMed Link

Friml, J. 2003. Auxin transport-shaping the plant. Curr. Opin. Plant Biol. 6: 7–12.

PubMed Link

Friml, J., X. Yang, M. Michniewicz, D. Weijers, A. Quint, O. Tietz, R. Benjamins, et al. 2004. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306: 862–865.

PubMed Link

Gifford, E. M. and A. S. Foster. 1989. Morphology and Evolution of Vascular Plants, 3rd Ed. W. H. Freeman & Company, New York.

Grossniklaus, U., J. Vielle-Calzada, M. A. Hoeppner and W. B. Gagliano. 1998. Maternal control of embryogenesis by MEDEA, a polycomb group gene inArabidopsis. Science 280: 446–450.

PubMed Link

Haccius, B. 1963. Restitution in acidity-damaged plant embryos: Regeneration or regulation? Phytomorphology 13: 107–115.

Harada, J. J. 2001. Role of Arabidopsis LEAFY COTYLEDON genes in seed development. J. Plant Physiol. 158: 405–409.

Hareven, D., T. Gutfinger, A Pornis, Y. Eshed, and E. Lifschitz. 1996. The making of a compound leaf: Genetic manipulation of leaf architecture in tomato. Cell 84: 735–744.

PubMed Link

Hay, A., H. Kaur, A. Phillips, P. Hedden, S. Hake and M. Tsiantis. 2002. The gibberellin pathway mediates KNOTTED-1 type homeobox function in plants with different body plans. Curr. Biol. 12: 1557–1565.

PubMed Link

Hecht, V. and 10 others. 2005. Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol. 137: 1420–1434.

PubMed Link

Hempel, F. D., D. R. Welch and L. J. Feldman. 2000. Floral induction and determination: Where is flowering controlled? Trends Plant Sci. 5: 17–21.

PubMed Link

Higashiyama, T., S. Yabe, N. Sasaki, Y. Nishimura, S. Miyagishima, H. Kyroiwa and T. Kuroiwa. 2001. Pollen tube attraction by the synergid cell. Science 293: 1480–1483.

PubMed Link

Hofer, J. M. I. and T. H. N. Ellis. 1998. The genetic control of patterning in pea leaves. Trends Plant Sci. 3: 439–444.

Huala, E. and I. M. Sussex. 1993. Determination and cell interactions in reproductive meristems. Plant Cell 5: 1157–1165.

PubMed Link

Hulskamp, M., K. Schneitz and R. E. Pruitt. 1995. Genetic evidence for a long-range activity that directs pollen tube guidance in Arabidopsis. Plant Cell 7: 57–64.

PubMed Link

Irish, V. F. and I. M. Sussex. 1992. A fate map of the Arabidopsis embryonic shoot apical meristem. Development 115: 745–754.

Jack, T. 2001. Relearning our ABCs: New twists on an old model. Trends Plant Sci. 6: 310–316.

PubMed Link

Jackson, D. 1996. Plant morphogenesis: Designing leaves. Curr. Biol. 6: 917–919.

PubMed Link

Jaffe, L. A., M. H. Weisenseel and L. F. Jaffe. 1975. Calcium accumulation within the growing tips of pollen tubes. J. Cell Biol. 67: 488–492.

PubMed Link

Janssen, B.-J., L. Lund, N. Sinha. 1998. Overexpression of a homeobox geneLeT6 reveals indeterminate features in the tomato compound leaf. Plant Physiol.117: 771–786.

PubMed Link

Jean, R. V. and D. Barabé. 1998. Symmetry in Plants. World Scientific Publishing, River Edge, NJ.

Jeong, S., A. E. Trotochaud and S. E. Clark. 1999. The Arabidopsis CLAVATA2gene encodes a receptor-like protein required for the stability of the CLAVATA1receptor-like kinase. Plant Cell 11: 1925–1933.

PubMed Link

Johri, B. M., K. B. Ambegaokar and P. S. Srivastava. 1992. Comparative Embryology of Angiosperms. Springer-Verlag, New York.

Jurgens, G. 2001 Apical-basal pattern formation in Arabidopsis embryogenesis.EMBO J. 20: 3609–3616.

PubMed Link

Kachroo, A., C. R. Schopfer, M. E. Nasrallah and J. B. Nasrallah. 2001. Allele-specific receptor-ligand interactions in Brassica self-incompatibilitiy. Science293: 1824–1826.

PubMed Link

Kao, T.-H. and T. Tsukamoto. 2004. The molecular and genetic bases of S-Rnase-based self-incompatability. Plant Cell 16: S72–S83.

PubMed Link

Kerstetter, R. A. K. Bollman, R. A. Taylor, K. Bomblies and R. S. Poethig. 2001.KANADI regulates organ polarity in Arabidopsis. Nature 411: 704–709.

PubMed Link

Kepinksi, S. and O. Leyser. 2005. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435: 446–451.

PubMed Link

Kidner, C. A. and R. A. Martienssen. 2005. The developmental role of microRNA in plants. Curr. Opin. Plant Biol. 8: 38–44.

PubMed Link

Kropf, D. L., S. R. Bisgrove and W. E. Hable. 1999. Establishing a growth axis in fucoid algae. Trends Plant Sci. 4: 490–494.

PubMed Link

Kumaran, M. K., J. L. Bowman and V. Sundaresan. 2002. YABBY polarity genes mediate the repression of KNOX homeobox genes in Arabidopsis. Plant Cell 14: 2761–2770.

PubMed Link

Kwong, R. W., A. Q. Bui, H. Lee, L. W. Kwong, R. L. Fischer, R. B. Goldberg and J. J. Harada. 2003. LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15: 5–18.

PubMed Link

Lang, A., M. K. Chailakhyan and I. A. Frolova. 1977. Promotion and inhibition of flower formation in a day-neutral plant in grafts with short-day and long-day plants. Proc. Natl. Acad. Sci. USA 74: 2412–2416.

Laux, T. and G. Jurgens. 1994. Establishing the body plan of the Arabidopsisembryo. Acta Bot. Neer. 43: 247–260.

Lawson, E. J. R. and R. S. Poethig. 1995. Shoot development in plants: Time for a change. Trends Genet. 11: 263–268.

PubMed Link

Lee, H.-S., S. Huang, and T.-H. Kao. 1994. S proteins control rejection of incompatible pollen in Petunia inflata. Nature 367: 560–563.

PubMed Link

Levy, Y. Y. and C. Dean. 1998. Control of flowering time. Curr. Opin. Plant Biol. 1: 49–54.

PubMed Link

Liu, C.-M., Z.-H. Xu and N.-H. Chua. 1993. Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5: 621–630.

PubMed Link

Long, J. A., S. Woody, S. Poethig, E. M. Meyerowitz and M. K. Barton. 2002. Transformation of shoots into roots in Arabidopsis embryos mutant at theTOPLESS locus. Development 129: 2297–2306.

PubMed Link

Lord, E. 2000. Adhesion and cell movement during pollination: Cherchez la femme. Trends Plant Sci. 5: 368–373.

PubMed Link

Marx, G. A. 1987. A suite of mutants that modify pattern formation in pea leaves. Plant Mol. Biol. Rep. 5: 311–335.

Mayer, U., R. A. Torres Ruiz, T. Berleth, S. Misera and G. Jurgens. 1991. Mutations affecting body organization in the Arabidopsis embryo. Nature 353: 402–406.

McConnell, J. R., J. Emery, Y. Eshed, N. Bao, J. Bowman and M. K. Barton. 2001. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots.Nature 411: 709–713.

PubMed Link

McDaniel, C. N. and R. S. Poethig. 1988. Cell-lineage patterns in the shoot apical meristem of the germinating maize embryo. Planta 175: 13–22.

McDaniel, C. N., S. R. Singer and S. M. E. Smith. 1992. Developmental states associated with the floral transition. Dev. Biol. 153: 59–69.

PubMed Link

Meinke, D. W., L. H. Franzmann, T. C. Nickle and E. C. Yeung. 1994. Leafy Cotyledon mutants of Arabidopsis. Plant Cell 6: 1049–1064.

PubMed Link

Meyerowitz, E. M. 1997. Genetic control of cell division patterns in developing plants. Cell 88: 299–308.

PubMed Link

Meyerowitz, E. M. 2002. Plants compared to animals: The broadest comparative study of development. Science 295: 1482–1485.

PubMed Link

Mogie, M. 1992. The Evolution of Asexual Reproduction in Plants. Chapman & Hall, New York.

Nasrallah, J. B. 2002. Recognition and rejection of self in plant reproduction.Science 296: 305–308.

PubMed Link

Nasrallah, M. E., P. Liu and J. B. Nasrallah. 2002. Generation of self-incompatibleArabidopsis thaliana by transfer of two S locus genes from A. lyrata. Science297: 247–249.

Pagnussat, G. C. and 10 others. 2005. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis.Development 132: 603–614.

PubMed Link

Palanivelu, R., L. Brass, A. F. Edlund and D. Preuss 2003. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels.Cell 114: 47–59.

PubMed Link

Park, M. Y., Wu, G., Gonzalez-Sulser, A., Vaucheret, H. and R. S. Poethig. 2005. Nuclear processing and export of microRNAs in Arabidopsis. Proc. Natl. Acad. Sci. USA 102: 3691–3696.

PubMed Link

Poethig, R. S. 1987. Clonal analysis of cell lineage patterns in plant development. Am. J. Bot. 74: 581–594.

Preuss, D. 1999. Chromatin silencing and Arabidopsis development: A role for polycomb proteins. Plant Cell 11: 765–768.

PubMed Link

Purugganan, M. D., A. L. Boyles and J. I. Suddith. 2000. Variation and selection at the CAULIFLOWER floral homeotic gene accompanying the evolution of domesticated Brassica oleracea. Genetics 155: 855–862.

PubMed Link

Ratcliffe, O. J., I. Amaya, C. A. Vincent, R. Rothstein, R. Carpenter, E. S. Coen and D. J. Bradley. 1998. A common mechanism controls the life cycle and architecture of plants. Development 125: 1609–1615.

PubMed Link

Ratcliffe, O. J. and J. L. Riechmann. 2002. Arabidopsis transcription factors and the regulation of flowering time: A genomic perspective. Curr. Iss. Mol. Biol. 4: 77–91.

PubMed Link

Ray, A. 1998. New paradigms in plant embryogenesis: Maternal control comes in different flavors. Trends Plant Sci. 3: 325–327.

Ray, S., G. T. Golden and A. Ray. 1996. Maternal effects of the short integument mutation on embryo development in Arabidopsis. Dev. Biol. 180: 365–369.

PubMed Link

Reddy, G. V. and E. M. Meyerowitz. 2005. Stem-cell homeostasis and growth dynamics can be uncoupled in the Arabidopsis shoot apex. Sciencexpress.www.sciencexpress.org/10.1126

PubMed Link

Reid, J. B., I. C. Murfet, S. R. Singer, J. L. Weller and S. A. Taylor. 1996. Physiological-genetics of flowering in Pisum. Semin. Cell Dev. Biol. 7: 455–463.

Rojo, E., V. K. Sharma, V. Koveleva, N. V. Raikhel and J. C. Fletcher. 2002. CLV3 is localized to the extracellular space, where it activates the CLAVATA stem cell signaling pathway. Plant Cell 14: 969–977.

PubMed Link

Sabatini, S., D. Beis, H. Wolkenfelt, J. Murfett, T. Guilfoyle, J. Malamy, P. Benfey, O. Leyser, N. Bechtold, P. Weisbeek and B. Scheres. 1999. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell99: 463–472.

PubMed Link

Schauer, S. E., S. E. Jacobsen, D. W. Meinke and A. Ray 2002. DICER-LIKE1: Blind men and elephants in Arabidopsis development. Trends Plant Sci. 17: 487–491.

PubMed Link

Scheres, B. and P. N. Benfey. 1999. Asymmetric cell division in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 505–537.

PubMed Link

Scheres, B., L. Di Laurenzio, V. Willemsen, M.-T. Hauser, K. Janmaat, P. Weisbeek and P. N. Benfey. 1995. Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis.Development 121: 53–62.

Scheres, B. and R. Heidstra. 1999. Digging out roots: Pattern formation, cell division, and morphogenesis in plants. Curr. Top. Dev. Biol. 45: 207–247.

PubMed Link

Schmid, M., T. S. Davison, S. R. Henz, U. J. Pape, M. Demar, M. Vingron, B. Schölkopf, D. Weigel and J. U. Lohmann. 2005. A gene expression map ofArabidopsis thaliana development. Nature Genetics 37: 501–506.

PubMed Link

Schwartz, B. W., E. C. Yeung and D. W. Meinke. 1994. Disruption of morphogenesis and transformation of the suspensor in abnormal suspensor mutants of Arabidopsis. Development 120: 3235–3245.

Searle, I. and G. Coupland. 2004. Induction of flowering by seasonal changes in photoperiod. EMBO J. 23: 1217–1222.

PubMed Link

Sessions, A., M. F. Yanfosky and D. Weigel. 2000. Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science 289: 779–781.

PubMed Link

Siegfried, K. R. Y. Eshed, S. F. Baum, D. Otsuga, G. N. Drews and J. L. Bowman. 1999. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis.Development 126: 4117–4128.

PubMed Link

Sijacic, P., and 7 others. 2004. Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature 429: 302–305.

PubMed Link

Simpson, G. G., A. R. Gendall and C. Dean. 1999. When to switch to flowering.Annu. Rev. Cell Dev. Biol. 15: 519–550.

PubMed Link

Singer, S. R., C. H. Hannon and S. C. Huber. 1992. Acquisition of competence for floral determination in shoot apices of Nicotiana. Planta 188: 546–550.

Sinha, N. 1999. Leaf development in angiosperms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 419–446.

Smith, R. H. 1984. Developmental potential of excised primordia and expanding leaves of Coleus blumei benth. Am. J. Bot. 71: 114–1120.

Southworth, D. 1996. Gametes and fertilization in flowering plants. Curr. Top. Dev. Biol. 34: 259–279.

PubMed Link

Stebbins, L. 1974. Flowering Plants: Evolution Above the Species Level. Belknap Press, Cambridge, MA.

Steeves, T. A. 1966. On the determination of leaf primordia in ferns. In E. G. Cutter (ed.), Trends in Plant Morphogenesis. Longman, London, pp. 200–219.

Steeves, T. A. and I. M. Sussex. 1989. Patterns in Plant Development, 2nd Ed. Cambridge University Press, New York.

Thomas, S. G. and V. E. Franklin-Tong. 2004. Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429: 305–308

PubMed Link

Trewavas, A. J. and R. Malho. 1998. Ca2+ signalling in plant cells: The big network. Curr. Opin. Plant Biol. 1: 428–433.

PubMed Link

Ueda, M. Y. Koshino-Kumura, and K. Okada. 2005. Stepwise understanding of root development. Curr. Opin. Plant Biol. 8: 71–76.

PubMed Link

Vega, S. H., M. Sauer, J. A. J. Orkwiszewski and R. S. Poethig. 2002. The early phase change gene in maize. Plant Cell 14: 133–147.

PubMed Link

Veit, B., S. P. Briggs, R. J. Schmidt, M. F. Yanofsky and S. Hake. 1998. Regulation of leaf initiation by the terminal ear 1 gene of maize. Nature 393: 166–168.

PubMed Link

Vielle-Calzada, J., J. Thomas, C. Spillane, A. Coluccio, M. A. Hoeppner and U. Grossniklaus. 1999. Maintenance of genomic imprinting at the Arabidopsis MEDEAlocus requires zygotic DDM1 activity. Genes Dev. 13: 2971–2982.

PubMed Link

Weigel, D. 1995. The genetics of flower development: From floral induction to ovule morphogenesis. Annu. Rev. Genet. 29: 19–39.

PubMed Link

Weigel, D. and O. Nilsson. 1995. A developmental switch sufficient for flower initiation in diverse plants. Nature 377: 495–500.

PubMed Link

Weijers, D. and G. Jürgens. 2005. Auxin and embryo axis formation: The ends in sight? Curr. Opinion Plant Biol. 8: 32–37.

PubMed Link

Weterings, K., N. R. Apuya, Y. Bi, R. L. Fischer, J. J. Harada and R. B. Goldberg. 2001. Regional localization of suspensor mRNAs during early embryo development. Plant Cell 13: 2409–2425.

PubMed Link

Wilhelmi, L. K. and D. Preuss. 1999. The mating game: Pollination and fertilization in flowering plants. Curr. Opinion Plant Biol. 2: 18–22.

PubMed Link

Williams, J. H. and W. E. Friedman. 2002. Identification of diploid endosperm in an early angiosperm lineage. Nature 415: 522–526.

PubMed Link

Williams, J. H. and W. E. Friedman. 2004. The four-celled female gametophyte ofIllicium (Illiciaceae; Austrobaileyales): Implications for understanding the origin and early evolution of monocots, eumagnolids, and eudicots. Am. J. Bot. 91: 332–351.

Willemsen, V., H. Wolkenfelt, G. de Vrieze, P. Weisbeek and B. Scheres. 1998. The HOBBIT gene is required for the formation of the root meristem in theArabidopsis embryo. Development 125: 521–531.

PubMed Link

Yadegari, R., G. R. de Paiva, T. Laux, A. M. Koltunow, N. Apuya, J. L. Zimmerman, R. L. Fischer, J. J. Harada and R. B. Goldberg. 1994. Cell differentiation and morphogenesis are uncoupled in Arabidopsis raspberryembryos. Plant Cell 6: 1713–1729.

PubMed Link

Yu, L. P., E. J. Simon, A. E. Trotochaud and S. E. Clark. 2000. POLTERGEIST functions to regulate meristem development downstream of the CLAVATA loci.Development 127: 1661–1670.

PubMed Link

Zeevaart, J. A. D. 1984. Photoperiodic induction, the floral stimulus and floral-promoting substances. In D. Vince-Prue, B. Thomas and K. E. Cockshull (eds.),Light and the Flowering Process. Academic Press, Orlando, pp. 137–142.

© All the material on this website is protected by copyright. It may not be reproduced in any form without permission from the copyright holder.