Page 1
Biopsies were successfully performed on olfactory mucosa without requiring the sacrifice of the donor animal, except mice. Cell populations were rapidly generated from olfactory mucosa explants. These cells displayed similar key features of their human counterparts: a fibroblastic morphology, a robust expression of nestin, an ability to form spheres and similar expression of surface markers (CD44, CD73). Moreover, most of them also exhibited high proliferation rates and clonogenicity with genus-specific properties. Finally, OE-MSCs also showed the ability to differentiate into mesodermal lineages. This article describes for the first time how millions of OE-MSCs can be quickly and easily obtained from different mammalian genera through protocols that are well-suited for autologous transplantations. Moreover, their multipotency makes them relevant to evaluate therapeutic application in a wide variety of tissue injury models. This study paves the way for the development of new fundamental and clinical studies based on OE-MSCs transplantation and suggests their interest in veterinary medicine. 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Stem cell-based regenerative medicine is an innovative field of scientific investigation that provides reliable evi-dence for repairing damaged tissues and organs, both in human and veterinary medicine. Being plastic and self-renewing, stem cells have been proposed as a potential treatment for a variety of disorders . However, the development of such therapies remains a scientific challenge. Currently, the use of stem cells or their derivatives in human medicine is still limited to a small number of applications: hematopoietic stem cell are the only type of grafted stem cell routinely used in clinics. In veterinary medicine, stem cell-based regenerative therapies are a fast growing field of research, particularly with the development of new treatments for musculoskeletal injuries. However, the clinical use of stem cells in veterinary medicine is in its early stages and pre-clinical studies aimed in determining the most suitable stem cell types and modes of delivery are still required.